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Abstract. I will survey classical empirical process theory and its
application to the study of the large sample properties of nonpara-
metric statistics. I will discuss such important and useful results
as the Skorohod representation, the KMT Brownian bridge ap-
proximation to the empirical and quantile processes and weighted
approximations to these processes and their martingale generaliza-
tions. In the process I will demonstrate their use in proving central
limit theorems for L-statistics and trimmed sums, among other ex-
amples, as well as in the derivation of the asymptotic distribution
of various goodness-of-fit tests. This material forms what may be
called the Seattle-Hungarian School of Empirical Processes. Much
of the material will be taken from the text: Empirical Processes
with Applications to Statistics, by Galen Shorack and Jon Wellner,
and my research papers.
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Preface

These notes began as a series of lectures that the author delivered
at Lunteren, Netherlands, to Dutch Ph.D. students in November of
1993. They were then reworked and elaborated with material taken
from talks that the author had presented in seminars and conferences,
and formed the basis of a week long course that he gave to graduate
students at Masaryk University, Brno, Czech Republic in October of
2006. Later on he further augmented these notes and presented them
as a mini-course on classical empirical process theory at the Centro
de Investigación en Matemáticas (CIMAT), Guanajuato, Mexico, in
February 2011 and in December 2014. This is an edited version of
his CIMAT lectures. They are largely about the remarkable proper-
ties of the uniform empirical distribution function and its application
to the study of nonparametric statistics and estimators. They have
benefited by suggestions and corrections by the late Sándor Csörgő,
Uwe Einmahl, Erich Haeusler, Péter Kevei, Claudia Kirch and Galen
Shorack. A good source for any result in them for which a reference is
not provided is the monograph: Empirical Processes with Applications
to Statistics by Shorack and Wellner (1986).
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CHAPTER 1

Introduction

I was introduced to the Seattle School of empirical processes in a se-
quence of courses on measure theoretic probability that I took in the
Winter and Spring Quarters of 1973 taught by Galen Shorack at the
University of Washington. By chance, Jon Wellner was a fellow stu-
dent. Some 13 years later the Shorack and Wellner [SW] (1986) famous
tome on empirical processes and their applications made its appear-
ance. Both Wellner and I wrote our Ph.D. dissertations under Shorack’s
direction and subsequently devoted much of our research careers to the
study of empirical processes.

Shorack’s treatment of empirical process theory revolved around the
uniform empirical distribution function, which had already shown itself
by 1973 to be very useful in the study of nonparametric statistics. We
shall begin with the definition of this function and indicate some of its
uses in nonparametric statistics.

Uniform (0,1) Random Variable

The Uniform (0, 1) random variable U has cumulative distribution func-
tion [cdf]

FU(t) =

 1 , t ≥ 1 ,
t , 0 ≤ t < 1 ,
0 , t < 0 .

Uniform Empirical Distribution

Let U,U1, U2, ..., be independent Uniform (0, 1) random variables. For
each integer n ≥ 1 the empirical distribution function based on U1, ..., Un,
is defined to be

(1.1) Gn(t) =
1

n

n∑
i=1

1{Ui ≤ t}, −∞ < t <∞.

The uniform empirical distribution functionGn is a very good estimator
of FU .

1
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Uniform Order Statistics

For future reference, for each integer n ≥ 1, let U1,n ≤ · · · ≤ Un,n
denote the order statistics of U1, . . . , Un.

We shall next turn to some motivation for the study of the uniform
empirical distribution.

Cumulative Distribution Function

Let X be a random variable with cumulative distribution function [cdf]
F , i.e. F (x) = P (X ≤ x), for all x. The cdf F is right-continuous
since for all x, by a property of probability measures, that says that
if Am+1 ⊂ Am, m ≥ 1, then limm→∞ P {Am} = P {A}, where A =
∩∞m=1Am, we have

P{X ≤ x} = P {∩ε↘0{X ≤ x+ ε}} = lim
ε↘0

P{X ≤ x+ ε}.

Empirical Distribution Function

For each integer n ≥ 1, let X,X1, . . . , Xn be an i.i.d. random sam-
ple from a cdf F and consider the empirical cumulative distribution
function Fn defined as

Fn(x) =
1

n

n∑
i=1

1 {Xi ≤ x} , −∞ < x <∞.

Order Statistics

Let X1,n ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . , Xn.

Kolmogorov-Smirnov Statistic

Consider the statistic

Dn = sup
−∞<x<∞

|Fn (x)− F (x)| .

The statistic Dn is called the Kolmogorov-Smirnov Goodness of Fit
Test. The following two theorems describe two of its important prop-
erties.

Theorem K1 As long as F is continuous, the distribution of Dn does
not depend on F, i.e. Dn is distribution free.

Proof. It is not difficult to show that

Dn = max
1≤i≤n

max{| i
n
− F (Xi,n)|, |i− 1

n
− F (Xi,n)|}.

Now since F (X) =d U, we see that (F (X1,n), . . . , F (Xn,n)) has the
same joint distribution as (U1,n, . . . , Un,n), and thus Dn has the same
distribution as



 
 

1. INTRODUCTION 3

max
1≤i≤n

max{| i
n
− Ui,n|, |

i− 1

n
− Ui,n|} = sup

0≤t≤1
|Gn (t)− t)| .

�

Theorem K2 For all x > 0,

P
{√

nDn ≤ x
}
→ H(x), as n→∞,

where

H(x) = 1− 2
∞∑
j=1

(−1)j−1e−2j2x2 .

The Kolmogorov-Smirnov Goodness of Fit Test has the following two
main uses:

A) Let F0 be a continuous cdf. Suppose we want to test the null
hypothesis

H0 : F = F0, where F0 is a specified distribution function

versus the alternative hypothesis

H1 : F 6= F0 at level α.

We reject H0 if
√
nDn > εn,α, where P {

√
nDn > εn,α} = α.

(B) Confidence Bands For F

Now when F is continuous

P{
√
nDn ≤ εn,α} = 1− α

= P

{
Fn(x)− εn,α√

n
≤ F (x) ≤ Fn(x) +

εn,α√
n

, for all x

}

= P

{
max[0, Fn(x)− εn,α√

n
] ≤ F (x) ≤ min[Fn(x) +

εn,α√
n
, 1], for all x

}
.

Thus a (1 − α)100% confidence band for F is any observation of the
random (1− α)100% band for F[

max[0, Fn(x)− εn,α√
n

], min[Fn(x) +
εn,α√
n
, 1]

]
, for all x.

Notice that when F is continuous the critical value εn,α is determined
on the assumption that F = FU and Fn = Gn.

The uniform empirical distribution function also arises naturally in the
study of rank statistics. For example, consider:



 
 

4 1. INTRODUCTION

The Mann-Whitney Wilcoxon test

Model: X, X1, . . . , Xm i.i.d. F, continuous, and Y, Y1, . . . , Yn i.i.d. G,
continuous.

The cdfG is said to be stochastically larger than F if for all x, P {Y > x}
≥ P {X > x} and P {Y > x} > P {X > x} for at least one x.

A special case of this is when Y =d X + ∆, with ∆ > 0, where F is
the cdf of X and G is the cdf of Y.

The cdf G is said to be stochastically smaller than F if for all x,
P {Y ≤ x} ≥ P {X ≤ x} and P {Y ≤ x} > P {X ≤ x} for at least one
x.

A special case of this is when Y =d X + ∆, with ∆ < 0, where F is
the cdf of X and G is the cdf of Y.

One may be interested in testing one of the following three hypothesis
testing situations:

(I) H0 :F = G versus H1 : G is stochastically larger than F ;

(II) H0 :F = G versus H1 : G is stochastically smaller than F ;

(III) H0 :F = G versus H1 : G 6= F .

A widely used statistic for testing these three hypotheses is the Wilcoxon
statistic

W =
n∑
j=1

Rj,

where R1, . . . , Rn denote the ranks of Y1, . . . , Yn among the combined
sample X1, . . . , Xm, Y1, . . . , Yn. Note that for each 1 ≤ j ≤ n

Rj =
m∑
i=1

1 {Xi ≤ Yj}+
n∑
k=1

1 {Yk ≤ Yj} .

Clearly in hypothesis testing situation (I) we reject H0 if W is too large;
in situation (II), we reject H0 if W is too small; and in situation (III),
we reject H0 if W is too large or small.

Let FX
m be the empirical distribution function based on X1, . . . , Xm and

F Y
n be the empirical distribution function based on Y1, . . . , Yn. Further

let

Hm+n =
(
mFX

m + nF Y
n

)
/ (m+ n) .

We see that

W = (m+ n)n

∫
R
Hm+n (x) dF Y

n (x) ,
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which, when F = G, has the same distribution as when F = G =
FU , that is, W is distribution free. To see this note that when F is

continuous and F = G

W =d (m+ n)n

∫ 1

0

Gm+n (x) dGY
n (x) ,

Gm+n (x) =
1

m+ n

m+n∑
i=1

1 {Ui ≤ x} and GY
n (x) =

1

n

n∑
i=1

1 {Ui+m ≤ x} ,

where U1, . . . , Um+n are i.i.d. Uniform (0, 1).

It turns out that the Wilcoxon statistic is a special case of a Chernoff-
Savage (1958) statistic. Pyke and Shorack (1968) published a path
breaking paper that showed how the asymptotic properties of the uni-
form empirical distribution can be used to prove central limit theorems
for such statistics. The main message that I received from Shorack’s
lectures in 1973 was that the study of the asymptotic distribution of
nonparametric statistics very often reduces to the study of the asymp-
totic distribution of functionals of the uniform empirical distribution
function. In the first part of these notes we discuss the properties of
Gn that are important to prove such results.

My research direction took a radical turn after I attended a series of
lectures presented by Miklós Csörgő based on his recent monograph
with Pál Révész, Strong approximations in probability and statistics,
at an N.S.F. Regional Conference on Quantile Processes held in July,
1981 at Texas A&M University. A year later I met Miklós’ younger
brother Sándor at the Conference on Limit Theorems in Probability
and Statistics in June, 1982 at Veszprém, Hungary. This was both
my introduction and induction into the Hungarian school of empiri-
cal processes. The next year I spent 6 months visiting Sándor at the
University of Szeged, where, working with Miklós and Lajos Horváth,
Sándor’s Ph.D. student at the time, we created a theory of weighted
approximations to the uniform empircal and quantile processes, which
in the following years I developed in collaboration with Sándor and
Erich Haeusler into a general quantile-transform–empirical-process ap-
proach to limit theorems. Much of my research over roughly the next
20 years, the bulk of it done with talented coauthors, was devoted to
extensions and applications of this theory to large sample problems
in probability theory and statistics. The second part of these notes
describe the main features of this work. Also included are two appen-
dices. The first is a purview of elementary large sample theory to fix
notation and definition, and the second derives some basic facts about



 
 

6 1. INTRODUCTION

uniform order statistics that are used in the proofs. In total, this mate-
rial forms a survey of what may be called the Seattle-Hungarian School
of Empirical Processes.



 
 

CHAPTER 2

Basic Notions, Definitions and Facts

We shall begin with a description and derivation of some of the
salient properties on the uniform empirical distribution function.

Glivenko–Cantelli Theorem

The Glivenko–Cantelli Theorem says that

(2.1) sup
0≤t≤1

|Gn (t)− t| → 0, a.s., as n→∞.

Actually more is known.

Dvoretsky, Kiefer and Wolfowitz Inequality

The Dvoretsky, Kiefer and Wolfowitz (1956) Inequality says even more,
namely that for some constant K > 0, all n ≥ 1 and any r > 0

(2.2) P

{
sup

0≤t≤1
|Gn (t)− t| > r

}
≤ K exp

(
−2r2n

)
.

Massart (1990) has shown that one can choose K = 2. (After Massart
announced this remarkable result in an invited talk presented at the
18th European Meeting of Statisticians in August 1988 in Berlin, DDR,
Sándor Csörgő and I stood up and applauded.) Notice that when this
inequality is combined with the Borel–Cantelli lemma, we get that

(2.3) sup
0≤t≤1

∣∣∣G̃n (t)− t
∣∣∣→ 0, a.s., as n→∞,

for any sequence
{
G̃n

}
n≥1

of equivalent versions of {Gn}n≥1, meaning

that G̃n =d Gn, for each n ≥ 1.

The Glivenko-Cantelli Theorem and the DKW Inequality for
Fn

It turns out that if X has cdf F then

{1 {X ≤ x} , x ∈ R} =d {1 {U ≤ F (x)} , x ∈ R} .
From this it follows that as a process in n ≥ 1,

(2.4) {Fn (x) , x ∈ R}n≥1 =d {Gn (F (x)) , x ∈ R}n≥1 .

7
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Thus from (2.1) and (2.2) we get

(2.5) sup
−∞<x<∞

|Fn (x)− F (x)| → 0, a.s., as n→∞

and for all r > 0,

(2.6) P

{
sup

−∞<x<∞
|Fn (x)− F (x)| ≥ r

}
≤ K exp

(
−2r2n

)
.

The Glivenko-Cantelli theorem can be proved directly using the strong

law of large numbers, which implies for all x

Fn (x)→ F (x) , a.s., as n→∞,
combined with an elementary argument using a grid and right-continuity
of F .

A Useful Probabilistically Equivalent Version of Gn

Here is a very useful probabilistically equivalent version of Gn. Let
ω1, ω2, . . . , be a sequence of i.i.d. exponential random variables with
mean 1. Set for j ≥ 1, Sj = ω1 + · · · + ωj. One has for each integer
n ≥ 1

(2.7)

(
S1

Sn+1

,
S2

Sn+1

, . . . ,
Sn
Sn+1

)
=d (U1,n, U2,n, . . . , Un,n) ,

where U1,n ≤ U2,n ≤ · · · ≤ Un,n are the order statistics of n i.i.d.
Uniform (0, 1) random variables. For a proof of this fact see Theorem
4B in Appendix B. We see then that for each n ≥ 1,

(2.8) G̃n (t) =
1

n

n∑
i=1

1

{
Si
Sn+1

≤ t

}
, −∞ < t <∞,

has the same distribution as

Gn (t) =
1

n

n∑
i=1

1 {Ui,n ≤ t} , −∞ < t <∞,

which is the uniform empirical distribution function (1.1). Thus for

each n ≥ 1, G̃n is a probabilistically equivalent version of Gn. However,
as a sequence in n ≥ 1, {

G̃n

}
n≥1
6=d {Gn}n≥1 .

The reason for this is that the representation (2.7) does not hold as a
sequence in n ≥ 1.
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A Useful Martingale

Here we point out that there is continuous time martingale lurking
here. Introduce the filtration

Fn (s) = σ {1 {Ui ≤ r} , i = 1, . . . , n, 0 ≤ r ≤ s} , for 0 < s < 1,

Fn (0) = {∅,Ω}.
Martingale Fact

Mn (t) =
Gn(t)− t

1− t
, 0 ≤ t < 1,

is a martingale, that is, for all 0 ≤ s ≤ t < 1,

(2.9) E (Mn (t) |Fn (s)) = Mn (s) .

Proof. Choose 0 ≤ s ≤ t < 1. We see that∑n
i=1 1{Ui > t}

1− t
=

∑n
i=1 1{Ui > s} −

∑n
i=1 1{s < Ui ≤ t}

1− t
.

Now
∑n

i=1 1{s < Ui ≤ t}|
∑n

i=1 1{Ui > s} = m is binomial with pa-
rameters m and p = t−s

1−s . Hence

E

(
n∑
i=1

1{s < Ui ≤ t}|
n∑
i=1

1{Ui > s} = m

)
=
m (t− s)

1− s
,

which gives

E

(∑n
i=1 1{Ui > t}

1− t
|

n∑
i=1

1{Ui > s} = m

)
=

m

1− t
− m (t− s)

(1− s) (1− t)

=
m (1− t)

(1− s) (1− t)
=

m

1− s
=

∑n
i=1 1{Ui > s}

1− s
.

Noting that

Mn (t) =
Gn(t)− t

1− t
= 1−

∑n
i=1 1{Ui > t}
n (1− t)

,

this implies that for 0 ≤ s ≤ t < 1,

E (Mn (t) |Fn (s)) = 1−
∑n

i=1 1{Ui > s}
n (1− s)

= Mn (s) ,

that is, (2.9) holds. �

An Easier to Establish Version of the DKW Inequality

Armed with the martingale fact we shall now prove a less precise, but
easier to establish version of the DKW inequality. (I first saw the idea
of this proof in Jon Wellner’s 1975 Ph.D. thesis. Also see Corollary
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2 of Wellner (1977).) First of all notice that since (U1, . . . , Un) =d

(1− U1, . . . , 1− Un),

(2.10) sup
0≤t≤1/2

|Gn (t)− t| =d sup
1/2≤t≤1

|Gn (t)− t| .

Next, since the right-continuous process

Mt :=
Gn (t)− t

1− t
, 0 ≤ t ≤ 1/2

is a martingale, for any u > 0 the processes Y
(1)
t = exp(uMt) and

Y
(2)
t = exp(−uMt) are submartingales. Thus by Doob’s inequality for

right- continuous submartingales (see the remark below), for any z ≥ 0
and u > 0

P

{
sup

0≤t≤1/2

uMt > uz

}
= P

{
sup

0≤t≤1/2

Y
(1)
t > euz

}
≤ EY

(1)
1/2 exp (−uz)

and

P

{
sup

0≤t≤1/2

−uMt > uz

}
= P

{
sup

0≤t≤1/2

Y
(2)
t > euz

}
≤ EY

(2)
1/2 exp (−uz) .

Now

EY
(1)

1/2 = EY
(2)

1/2 =
((

exp
(u
n

)
+ exp

(
−u
n

))
/2
)n
,

which by using the elementary inequality

(exp (u) + exp (−u)) /2 ≤ exp
(
u2/2

)
,

gives ((
exp

(u
n

)
+ exp

(
−u
n

))
/2
)n
≤ exp

(
u2

2n

)
.

Thus by setting u = zn, we get

EY
(1)

1/2 exp (−uz) = EY
(2)

1/2 exp (−uz)

≤ exp

(
u2

2n

)
exp (−uz) = exp

(
−nz2/2

)
.

Putting everything together we have

P

{
sup

0≤t≤1/2

|Gn (t)− t| > z

}

≤ P

{
sup

0≤t≤1/2

Gn (t)− t
1− t

> z

}
+ P

{
sup

0≤t≤1/2

t−Gn (t)

1− t
> z

}
≤ 2 exp

(
−nz2/2

)
.
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By (2.10) this implies that

P

{
sup

0≤t≤1
|Gn (t)− t| > z

}
≤ 4 exp

(
−nz2/2

)
.

Remark Doob’s inequality for right-continuous submartingales says
that for a non-negative submartingle Ys, a ≤ s ≤ b, for all λ > 0,

P

{
sup
a≤s≤b

Ys > λ

}
≤ λ−1EYb.

(See, for instance, Inequality 5 on page 874 of SW(1986).)

Linearity of Gn

A very useful property of Gn is its linearity in various senses.

Fact 1. (Linearity in probability) For all ε > 0 there exists a λ > 1
such that for all n ≥ 1,

P

{
1

λ
<
Gn (t)

t
< λ for all U1,n ≤ t ≤ 1

}
≥ 1− ε,

where U1,n denotes the minimum of U1, . . . , Un.

Fact 2. (Poisson approximation) There exists a standard rate one

Poisson process N (x) , x ≥ 0, and a sequence
{
G̃n

}
n≥1

of probabilis-

tically equivalent versions of {Gn} such that

sup
0≤x≤n

∣∣∣∣∣nG̃n (x/n)

x
− N (x)

x

∣∣∣∣∣→P 0, as n→∞.

Fact 3 (Linearity close to zero, in probability) For any sequence
an > 0, such that an → 0 and nan →∞, as n→∞,

sup
an≤t≤1

∣∣∣∣Gn (t)

t
− 1

∣∣∣∣→P 0, as n→∞.

Fact 4. (Linearity close to zero, almost surely) For any sequence

an > 0, such that an → 0 and nan/ log log n→∞ as n→∞,

sup
an≤t≤1

∣∣∣∣Gn (t)

t
− 1

∣∣∣∣→ 0, a.s., as n→∞.

A proof of Fact 1 is given in Pyke and Shorack (1968). We shall provide
our own proof here which will give you an example of the kind of
arguments used to prove linearity results. For the rest of these facts
consult Wellner (1978) and the references therein. All of them are
found in SW(1986).
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The following two results establish Fact 1.

Daniels (1945) For all n ≥ 1 and λ ≥ 1

(2.11) P

{
sup

0≤s<1

Gn (s)

s
≤ λ

}
= 1− λ−1.

Proof. We shall prove this by induction. Note that when n = 1

P

{
sup

0≤s<1

G1 (s)

s
≤ λ

}
= P

{
1

U
≤ λ

}
= 1− λ−1.

Now consider

P

{
sup

0≤s<1

Gn+1 (s)

s
≤ λ

}
.

Let U1,n+1 ≤ · · · ≤ Un+1,n+1 denote the order statistics of U1, . . . , Un+1.
For 0 ≤ s < Un+1,n+1

Gn+1 (s) =
1

n+ 1

n∑
i=1

1 {Ui,n+1 ≤ s}

and for Un+1,n+1 ≤ s < 1, Gn+1 (s) = 1. Thus

sup
0≤s<1

Gn+1 (s)

s

= max

{
sup

0≤s<Un+1,n+1

1

s (n+ 1)

n∑
i=1

1 {Ui,n+1 ≤ s} , 1

Un+1,n+1

}
.

Next notice that

sup
0≤s<Un+1,n+1

1

s (n+ 1)

n∑
i=1

1 {Ui,n+1 ≤ s}

=
n

(n+ 1)Un+1,n+1

sup
0≤t<1

1

tn

n∑
i=1

1

{
Ui,n+1

Un+1,n+1

≤ t

}
,

and since
(

U1,n+1

Un+1,n+1
, . . . , Un,n+1

Un+1,n+1

)
=d (U1,n, . . . , Un,n),

sup
0≤t<1

1

tn

n∑
i=1

1

{
Ui,n+1

Un+1,n+1

≤ t

}
=d sup

0≤t<1

Gn (t)

t
.

An application of Theorem 4B in Appendix B shows that Ui,n+1

Un+1,n+1
, i =

1, . . . , n are independent of Un+1,n+1. Moreover, a special case of The-
orem 3B gives that Un+1,n+1 has density

gn+1 (u) = (n+ 1)un1 {u ∈ [0, 1]} .
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By induction P
{

sup0≤s<1
Gn(s)
s
≤ λ

}
= 1− λ−1. Therefore

P

{
max

{
sup

0≤s<Un+1,n+1

1

s (n+ 1)

n∑
i=1

1 {Ui,n+1 ≤ s} , 1

Un+1,n+1

}
≤ λ

}

= P

{
max

{
n

(n+ 1)Un+1,n+1

sup
0≤t<1

Gn (t)

t
,

1

Un+1,n+1

}
≤ λ

}
= P

{
sup

0≤t<1

Gn (t)

t
≤ (n+ 1)λUn+1,n+1

n
and Un+1,n+1 ≥

1

λ

}
Now this last probability is equal to∫ 1

λ−1

(
1− n

u (n+ 1)λ

)
gn+1 (u) du

=

∫ 1

λ−1

(
1− n

u (n+ 1)λ

)
(n+ 1)undu

= (n+ 1)

∫ 1

λ−1

undu− n

λ

∫ 1

λ−1

un−1du

= 1−
(

1

λ

)n+1

− 1

λ

(
1−

(
1

λ

)n)
= 1− λ−1.

�

Here is how the second half of Fact 1 is proved. We see that for any
Ui,n ≤ t < Ui+1,n, i = 1, . . . , n, where Un+1,n = 1,

Gn (t)

t
≥ i

nUi+1,n

.

Recall the distributional representation given in (2.7) for each n ≥ 1
for the uniform order statistics U1,n, U2,n, . . . , Un,n. Thus

inf
U1,n≤t≤1

Gn (t)

t
≥ min

1≤i≤n

i

nUi+1,n

=d min
1≤i≤n

Sn+1i

nSi+1

=: Vn.

Our proof will be based on the following elementary fact.

Elementary Fact Let {Yj}j≥1 be a sequence of strictly positive ran-

dom variables on a probability space (Ω, A, P ) such that for some
c > 0, Yj → c, a.s, as j → ∞. Then P {0 < V <∞} = 1, where
V = infj≥1 Yj.

Proof By assumption for almost every ω ∈ Ω there exists a j (ω) >
1 such that Yj ≥ c/2 for all j > j (ω). Thus for almost every ω,
Yj > 0 for all 1 ≤ j ≤ j (ω) and Yj ≥ c/2 for all j > j (ω). Hence
P {0 < V <∞} = 1. �
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Apply the elementary fact with Yj = j/Sj+1, j ≥ 1, and noting that
Yj → 1, a.s, as j → ∞, we see that P {0 < V <∞} = 1, where
V = infj≥1 Yj. Next observe that

Vn =
Sn+1

n
min

1≤i≤n

i

Si+1

→d V .

Thus for all ρ > 0 such that ρ is a continuity point of the cdf of V ,

P {Vn > ρ} → P {V > ρ} .

Since P {V > 0} = 1, for all 0 < ε < 1 there exists a ρ > 0 satisfying
P {V > ρ} > 1− ε/4 and an n (ε) > 1 such that P {Vn > ρ} > 1− ε/2
for all n > n (ε). Now since P {Vn > 0} = 1 for all n ≥ 1, there exists
a 0 < ρ′ < ρ such that P {Vn > ρ′} > 1 − ε/2 for each 1 ≤ n ≤ n (ε) .
Therefore P {Vn > ρ′} > 1−ε/2 for all n ≥ 1. Hence there exists λ > 1
such that
(2.12)

P

{
1

λ
<
Gn (t)

t
for all U1,n ≤ t ≤ 1

}
≥ P

{
Vn > λ−1

}
≥ 1− ε/2.

We see that for any λ > 1 ∨ (2/ε) satisfying (2.12) and by (2.11)

P

{
1

λ
<
Gn (t)

t
< λ for all U1,n ≤ t ≤ 1

}
≥ P

{
1

λ
<
Gn (t)

t
for all U1,n ≤ t ≤ 1

}
− P

{
sup

0≤s<1

Gn (s)

s
≥ λ

}
≥ 1− ε/2− λ−1 > 1− ε.

Thus completes the prove of Fact 1.

Uniform Empirical Process

The uniform empirical process based on U1, ..., Un, n ≥ 1, is defined to
be

(2.13) αn(t) =
√
n{Gn(t)− t}, t ∈ [0, 1] .

It is readily checked that

αn(0) = αn(1) = 0, Eαn (t) = 0 for all t ∈ [0, 1]

and

Cov (αn (s) , αn (t)) = s ∧ t− st, s, t ∈ [0, 1] ,

where s∧ t = min(s, t). The multivariate central limit theorem implies
that for any choice of t1, . . . , tm ∈ [0, 1] , m ≥ 1,

(2.14) (αn (t1) , . . . , αn (tm))→d (Z1, . . . , Zm) , as n→∞,
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where (Z1, . . . , Zm) is multivariate normal with mean vector zero and

cov (Zi, Zj) = ti ∧ tj − titj, 1 ≤ i, j ≤ m.

Much more than (2.14) can be said.

Brownian Bridge

A Brownian Bridge is a continuous Gaussian process on [0, 1] such that

B(0) = B(1) = 0, EB (t) = 0 for all t ∈ [0, 1]

and

Cov (B (s) , B (t)) = s ∧ t− st, s, t ∈ [0, 1] .

The Brownian bridge B has the following representation:

B (t) = W (t)− tW (1) , t ∈ [0, 1] ,

where W is a standard Wiener process, i.e. W is a continuous Gaussian
process on [0, 1] with W (0) = 0, EW (t) = 0 for 0 ≤ t ≤ 1 and
E (W (t)W (s)) = s ∧ t, s, t ∈ [0, 1] . (For more about the Brownian
bridge see pages 182–184 of Hájek and Šidák (1967).)

Doob (1949) was the first to notice that for all x > 0,

P

{
sup

0≤s≤1
|B (s)| ≤ x

}
= H(x),

where H is as in Theorem K2. Noting that

P
{√

nDn ≤ x
}

= P

{
sup

0≤s≤1
|αn (s)| ≤ x

}
,

we see then by Theorem K2 that

P

{
sup

0≤s≤1
|αn (s)| ≤ x

}
→ P

{
sup

0≤s≤1
|B (s)| ≤ x

}
, as n→∞.

Donsker’s famous and powerful functional central limit theorem implies
that T (αn) converges in distribution to T (B), where B is a Brownian
bridge, for a suitable class of functionals T, which includes T (αn) =
sup0≤s≤1 |αn (s)|. (Consult Billingsley (1968) for a proof of Donsker’s
theorem.) We shall soon see that much more can be said about how
αn converges to B.

The Skorohod Representation Theorem

The Skorohod Representation Theorem for the uniform empirical pro-
cess αn says that there exists a sequence {α̃n}n≥1 of probabilistically
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equivalent versions of {αn}, meaning α̃n =d αn, for each n ≥ 1, and a
fixed Brownian bridge B such that

(2.15) sup
0≤t≤1

|α̃n (t)−B (t)| → 0, a.s., as n→∞.

(See Theorem 1 of SW (1986) or pages 757-758 of Pyke and Shorack
(1968).) Notice that this implies that T (αn) →d T (B) for any func-
tional on the space of bounded functions on [0, 1] that is continuous in
the supremum norm.

The General Empirical Process

The general empirical process based on Fn is

αn,F (x) =
√
n {Fn (x)− F (x)} , −∞ < x <∞.

Notice that for any x, y

cov (αn,F (x) , αn,F (y)) = F (x ∧ y)− F (x)F (y)

and we get from (2.4), the Skorohod representation

(2.16) sup
−∞<x<∞

|α̃n,F (x)−B (F (x))| → 0, a.s., as n→∞,

where for each n ≥ 1, α̃n,F (x) := α̃n (F (x)) and {α̃n,F (x)}x∈(−∞,∞) =d

{αn,F (x)}x∈(−∞,∞) .

Birnbaum–Marshall Inequality (1961)

The first step towards a weighted approximation to αn was based upon
the following application of the Birnbaum–Marshall inequality, which
says that for any positive function q on (0, 1), increasing on (0, 1/2]
and decreasing on [1/2, 1) such that

(2.17)

∫ 1

0

du

q2 (u)
<∞,

there exists a constant C such that for all r > 0 and 0 < δ < 1/2,

P

{
sup

0<s≤δ
|αn(s)| /q (s) > r

}
+ P

{
sup

0<s≤δ
|αn(1− s)| /q (1− s) > r

}

(2.18) ≤ C

r2

∫ δ

0

(
1

q2 (u)
+

1

q2 (1− u)

)
du

and

P

{
sup

0<s≤δ
|B(s)| /q (s) > r

}
+ P

{
sup

0<s≤δ
|B(1− s)| /q (1− s) > r

}
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(2.19) ≤ C

r2

∫ δ

0

(
1

q2 (u)
+

1

q2 (1− u)

)
du.

(These inequalities actually follow from the Hájek-Rényi inequality. See
below.) This says of course that for all r > 0
(2.20)

lim
δ↘0

lim sup
n→∞

[
P

{
sup

0<s≤δ

|αn(s)|
q (s)

> r

}
+ P

{
sup

0<s≤δ

|αn(1− s)|
q (1− s)

> r

}]
= 0

and
(2.21)

lim
δ↘0

[
P

{
sup0<s≤δ |B(s)|

q (s)
> r

}
+ P

{
sup0<s≤δ |B(1− s)|

q (1− s)
> r

}]
= 0.

Let q be any positive function on (0, 1), increasing on (0, 1/2] and
decreasing on [1/2, 1) such that (2.17) holds. Using this inequality one
can show that for any probability space such that

sup
0≤t≤1

|α̃n (t)−Bn (t)| →p 0,

where {α̃n} is a sequence of probabilistically equivalent versions of
{αn}, and {Bn} is an appropriate sequence of Brownian bridges, we
have the following weighted convergence in probability to zero

(2.22) sup
0<t<1

|α̃n (t)−Bn (t)| /q (t)→p 0.

We shall return to this soon.

A Digression about the Hájek-Rényi Inequality

Let ξ1, . . . , ξm be martingale difference sequence, where each ξk has
mean 0 and finite variance σ2

k. (This means that Sj, j = 0, . . . ,m,

forms a martingale, where S0 = 0 and for j = 1, . . . ,m, Sj =
∑j

i=1 ξi.)
Then for any non-increasing sequence of positive constants c1, . . . , cm,
m > 1, we have for any ε > 0 and positive integers n < m

P

{
max
n≤k≤m

ck

∣∣∣∣∣
k∑
j=1

ξj

∣∣∣∣∣ ≥ ε

}
≤ 1

ε2

(
c2
n

n∑
k=1

σ2
k +

m∑
k=n+1

c2
kσ

2
k

)
.

This is Theorem 8 (iii) on page 243 of Chow and Teicher (1978). The
original version of the Hájek-Rényi inequality was stated for sums of
independent random variables.

To see how the Birnbaum and Marshall inequality follows from the
Hájek-Rényi inequality, let q be a positive and increasing function on
(0, 1/2] and choose any N ≥ 4 and 0 < δ < 1/2. Set ck = 1/q (k/N) for
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k = 1, . . . , dNδe∨2 and ξj = αn(j/N)
1−j/N −

αn((j−1)/N)
1−(j−1)/N

for j = 1, . . . , dNδe∨2.

We see that for k = 1, . . . , dNδe ∨ 2,

k∑
j=1

ξj =
αn (k/N)

1− k/N
=

√
nMn (k/N)

1− k/N
,

which by the above forms a martingale difference sequence. Therefore
by the Hájek-Rényi inequality with n = 1 and m = [Nδ] ,

P

{
max

1≤k≤dNδe∨2

∣∣∣∣ αn (k/N)

(1− k/N) q (k/N)

∣∣∣∣ ≥ ε

}

≤ 1

ε2

q−2 (1/N)σ2
1 +

dNδe∨2∑
k=2

q−2 (k/N)σ2
k

 .

Now for some D > 0 independent of N ≥ 4, 0 < δ < 1/2 and k =
1, . . . , dNδe ∨ 2,

σ2
k = V ar

(
αn (k/N)

1− k/N
− αn ((k − 1) /N)

1− (k − 1) /N

)
≤ D

N
.

Thus

q−2 (1/N)σ2
1 +

dNδe∨2∑
k=2

q−2 (k/N)σ2
k

≤ D

ε2N

dNδe∨2∑
k=1

q−2 (k/N) ≤ D

ε2

∫ (dNδe∨2)/N

0

du

q2 (u)
.

Now by letting N → ∞, and noting that, with probability 1, for each
n ≥ 1, U1, . . . , Un miss the discontinuity points of q, we can conclude
that for some constant C ′ > 0 independent 0 < δ < 1/2 and ε > 0,

P

{
sup

0<s≤δ

∣∣∣∣αn(s)

q (s)

∣∣∣∣ ≥ ε

}
≤ P

{
sup

0<s≤δ

∣∣∣∣ αn(s)

(1− s) q (s)

∣∣∣∣ ≥ ε

}
≤ C ′

ε2

∫ δ

0

du

q2 (u)
.

Quantile Function

Let X be a random variable with cdf F , i.e. F (x) = P (X ≤ x). The
inverse or quantile function of F , written Q, is defined for s ∈ (0, 1) to
be

(2.23) Q(s) = inf{x : F (x) ≥ s}.
(inf{x : F (x) ≥ s} means infimum {x : F (x) ≥ s}, that is, Q(s) is that
value for which F (Q(s) + ε) ≥ s for ε > 0 and F (Q(s)− ε) < s for
ε > 0.) The quantile function Q has a number of useful properties.
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(i) Q is nondecreasing;

(ii) for any s ∈ (0, 1), Q (s) ≤ x if and only if F (x) ≥ s;

(ii’) for any s ∈ (0, 1), Q (s) > x if and only if F (x) < s;

(iii) Q left-continuous on (0, 1), since F is right-continuous.

Note that (i), (ii) and (ii’) are obvious. To see why (iii) is true, notice
that by (i), Q(s−) ≤ Q(s). Suppose that Q(s−) < Q(s). Clearly for
any Q(s−) < x < Q(s), we have by (ii’) that F (x) < s. Moreover by
right-continuity of F , for all ε > 0 small enough, F (x+ ε) < s, which
is impossible since we know by (ii) that s ≤ F (x). Thus Q(s−) = Q(s),
which says that Q is left continuous.

For more details see Appendix 1 of Reiss (1989).

Probability Integral Transformation

If X is a random variable with cdf F , then

(2.24) X =d Q (U) .

(This is called the probability integral transformation.)

Proof. By (ii), Q (U) ≤ x if and only if F (x) ≥ U. Thus for each x,

P (Q(U) ≤ x) = P (F (x) ≥ U) = F (x).

�

Note that the probability integral transformation implies that if X1, . . . ,
Xn are independent random variables with common cdf F and U1, . . . ,
Un are Uniform (0, 1) random variables,

(2.25) (X1, . . . , Xn) =d (Q (U1) , . . . , Q (Un)) .



 
 



 
 

CHAPTER 3

Empirical Process Technology Circa 1972

The Classical Empirical Process Technology Circa 1972 consisted of
the following basic ingredients:

1. The Glivenko–Cantelli theorem;

2. Linearity in probability;

3. Birnbaum–Marshall inequality;

4. The Skorohod Representation theorem;

5. The probability integral transformation.

An Example of the Use of the 1972 Technology: The Asymp-
totic Normality of L-statistics

The basic ideas in this section originate from Shorack (1972). Let X,
X1, . . . ,Xn be i.i.d. with common cdf F with corresponding quantile
function Q and let X1,n ≤ · · · ≤ Xn,n denote their order statistics.
Consider the L–statistic

Ln =
n∑
i=1

ci,nXi,n,

where c1,n, . . . , cn,n are constants. By (2.25) we get that

Ln =d

n∑
i=1

ci,nQ (Ui,n) ,

where U1,n ≤ · · · ≤ Un,n are the order statistics of U1, . . . , Un.

From now on for simplicity of presentation assume that

ci,n =

∫ i/n

(i−1)/n

J(u)du, i = 1, . . . , n,

with J being a continuous integrable function on (0, 1). Write

µ =

∫ 1

0

Q(u)J(u)du,

21
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where we assume
∫ 1

0
|Q(u)J(u)| du < ∞. (One can weaken the conti-

nuity assumption on J to the requirement that J and Q do not share
discontinuity points.)

It was observed by Shorack (1972) that∫ 1

0

∫ t

Gn(t)

J(u)dudQ (t) =
n∑
i=1

ci,nQ (Ui,n)− µ =d Ln − µ.

Now by applying the mean value theorem for each t ∈ (0, 1) we can
find a θn (t) between Gn (t) and t so that

J (θn (t)) (t−Gn (t)) =

∫ t

Gn(t)

J(u)du.

So we get that

(3.1)
√
n

∫ 1

0

J (θn (t)) (t−Gn (t)) dQ (t) =d

√
n (Ln − µ) .

We shall be using the tools 1, 2, 3 and 4.

To obtain the asymptotic distribution of
√
n (Ln − µ), it is clear from

(3.1) that it suffices to determine that of

(3.2)

∫ 1

0

J (θn (t))αn (t) dQ (t) .

We shall now switch to the probability space of the Skorohod repre-
sentation. We shall work with a sequence {α̃n}n≥1 of probabilistically
equivalent versions of {αn} and a fixed Brownian bridge B such that

sup
0≤t≤1

|α̃n (t)−B (t)| → 0, a.s., as n→∞.

So instead of (3.2), we shall investigate its probabilistically equivalent
version

(3.3)

∫ 1

0

J
(
θ̃n (t)

)
α̃n (t) dQ (t) .

First by the Glivenko–Cantelli theorem (see (2.3) above)

(3.4) sup
0≤t≤1

∣∣∣θ̃n (t)− t
∣∣∣→ 0, a.s., as n→∞.

Therefore by continuity of J and B and (3.4) for each 0 < δ < 1/2,

(3.5) sup
δ≤t≤1−δ

∣∣∣J (θ̃n (t)
)
α̃n (t)− J(t)B(t)

∣∣∣→ 0, a.s., as n→∞.
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Hence it is natural then to assume that somehow in some stochastic
sense

(3.6)

∫ 1

0

J
(
θ̃n (t)

)
α̃n (t) dQ (t)→

∫ 1

0

J (t)B (t) dQ (t) ,

from which it can be inferred that

(3.7)

∫ 1

0

J
(
θ̃n (t)

)
α̃n (t) dQ (t)→d

∫ 1

0

J (t)B (t) dQ (t) .

Since under suitable assumptions on J and Q the random variable∫ 1

0

J (t)B (t) dQ (t)

is a normal random variable with mean 0 and variance

σ2(J) =

∫ 1

0

∫ 1

0

(s ∧ t− st)J(s)J(t)dQ(s)dQ(t) <∞,

we could conclude from (3.7) that
√
n (Ln − µ)→d N

(
0, σ2(J)

)
.

We shall now show how to use the tools in 1, 2, 3 and 4 to establish
(3.6). Choose any 0 < δ < 1/2 and decompose∫ 1

0

J
(
θ̃n (t)

)
α̃n (t) dQ (t)

=

∫ 1−δ

δ

J
(
θ̃n (t)

)
α̃n (t) dQ (t) +

∫ δ

0

J
(
θ̃n (t)

)
α̃n (t) dQ (t)

+

∫ 1

1−δ
J
(
θ̃n (t)

)
α̃n (t) dQ (t) = Mn (δ) + Ln (δ) + Un (δ) .

Also write∫ 1

0

J (t)B (t) dQ (t) =

∫ 1−δ

δ

J (t)B (t) dQ (t) +

∫ δ

0

J (t)B (t) dQ (t)

+

∫ 1

1−δ
J (t)B (t) dQ (t) = M (δ) + L (δ) + U (δ) .

Clearly by (3.5)

(3.8) Mn (δ)→M (δ) , a.s., as n→∞.
Now impose the following assumptions: for some ν1 > 0 and ν2 > 0
with −1/2 + ν1 < 0 and −1/2 + ν2 < 0
(3.9)
|J(u)| ≤ Ku−1/2+ν1 and |J(1− u)| ≤ Ku−1/2+ν2 , for 0 < u ≤ 1/2.
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Further assume that for some ν1 > µ1 > 0 and ν2 > µ2 > 0 with
−1/2 < −1/2 + ν1 − µ1 < 0 and −1/2 < −1/2 + ν2 − µ2 < 0

(3.10) B1 =

∫ 1/2

0

tµ1dQ (t) <∞ and B2 =

∫ 1

1/2

(1− t)µ2 dQ (t) <∞.

The conditions on J and Q imply that σ2(J) < ∞. (From now on to
ease notation we shall drop the ∼’s.) Using the linearity in probability
(keeping in mind that θn (t) is between Gn (t) and t), by Fact 1 and the
fact that U1,n →P 0, for any ε > 0 we can choose a λ > 1 and n large
enough so that with probability greater than or equal to 1− ε ,

1

λ
<
Gn (t)

t
< λ for all U1,n ≤ t ≤ 1 and U1,n < δ,

which implies by the first part of (3.9) that for all U1,n ≤ t ≤ δ,

(3.11) |J(θn (t))| ≤ Kλt
−1/2+ν1

for some Kλ > 0. Now for 0 < t < U1,n ≤ 1/2, by definition,

J (θn (t)) = t−1

∫ t

0

J (u) du,

so that inequality (3.11) still holds by increasing Kλ, if necessary.
Therefore on this random set

|Ln (δ)| ≤ Kλ

∫ δ

0

|αn (t)| t−1/2+ν1dQ (t)

≤ Kλ sup
0<t≤δ

|αn (t)| t−1/2+ν1−µ1B1.

Notice that the function

q (t) = t1/2−ν1+µ1 , 0 < t ≤ 1/2,

satisfies the conditions of the Birnbaum–Marshall inequality, so that
for all ε > 0,

lim
δ↘0

lim sup
n→∞

P

{
sup

0<t≤δ
|αn(t)| t−1/2+ν1−µ1 > ε

}
= 0.

Thus we get for all ε > 0,

lim
δ↘0

lim sup
n→∞

P

{
sup

0<t≤δ
|Ln(δ)| > ε

}
= 0.

In the same way one can show that for all ε > 0,

lim
δ↘0

lim sup
n→∞

P

{
sup

0<t≤δ
|Un(δ)| > ε

}
= 0.
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Moreover, similarly, one can prove that for all ε > 0,

lim
δ↘0

[
P

{
sup

0<t≤δ
|L(δ)| > ε

}
+ P

{
sup

0<t≤δ
|U(δ)| > ε

}]
= 0.

Hence by “ε−squeezing” (see Theorem 4.2 of Billingsley (1968)),∫ 1

0

J
(
θ̃n (t)

)
α̃n (t) dQ (t)→P

∫ 1

0

J (t)B (t) dQ (t) .

We have just proved a simplified version of Theorem 1 of Shorack
(1972). Also see Section 16.4 of Shorack (2000). For further advances
in central limit theorems for L-statistics refer to Mason and Shorack
(1990, 1992). In particular, see Theorem 3.2 of Mason and Shorack
(1990). There the proofs are based on the weighted approximation
stated in Theorem 1 below.

ε−squeezing

Suppose we want to show that the sequence of random variables (Yn)n≥1

converges in probability to the random variable Y, i.e., we want to show
that for all ε > 0,

(3.12) P {|Yn − Y | > ε} → 0,

that is, Yn →P Y . Sometimes one can do this by “ε−squeezing”.
Suppose that for each 0 < δ < 1, there exist sequences of random
variables ∆n (δ) and Mn (δ) such that

|Yn − Y | ≤ ∆n (δ) +Mn (δ) .

Assume that for all 0 < δ < 1 and ε > 0

P {|Mn (δ)| > ε} → 0,

that is, Mn (δ)→P 0. Further assume that for all ε > 0

lim sup
δ↘0

lim sup
n→∞

P {|∆n (δ)| > ε} → 0.

Then we get that for all ε > 0

P {|Yn − Y | > 2ε} ≤ P {|Mn (δ)| > ε}+ P {|∆n (δ)| > ε} .
Therefore

lim sup
n→∞

P {|Yn − Y | > 2ε} = lim sup
δ↘0

lim sup
n→∞

P {|Yn − Y | > 2ε}

≤ lim sup
δ↘0

lim sup
n→∞

P {|Mn (δ)| > ε}+lim sup
δ↘0

lim sup
n→∞

P {|∆n (δ)| > ε} = 0.

Since ε > 0 can be made arbitrarily small, this implies (3.12).
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q−metric convergence

Pyke and Shorack (1968) were interested in characterizing those posi-
tive functions q on (0, 1) increasing on (0, 1/2] and decreasing on [1/2, 1)
such that for the Skorohod representation

(3.13) sup
0<t<1

|α̃n (t)−B (t)| /q (t)→p 0, as n→∞.

They called this q−metric convergence of the uniform empirical pro-
cess to a Brownian bridge. An application of the Birnbaum–Marshall
inequality shows that for (3.13) to hold it suffices that∫ 1

0

dt

q2 (t)
<∞.

Here is the argument. We have for any 0 < δ < 1/2,

sup
δ<t<1−δ

|α̃n (t)−B (t)| /q (t)

≤ max

(
1

q (δ)
,

1

q (1− δ)

)
sup

0<t<1
|α̃n (t)−B (t)| ,

sup
0<t≤δ

|α̃n (t)−B (t)| /q (t) ≤ sup
0<t≤δ

|α̃n (t)| /q(t) + sup
0<t≤δ

|B (t)| /q(t),

with a similar bound for sup1−δ<t≤1 |α̃n (t)−B (t)| /q (t) . Using (2.15),
(2.20) and (2.21), we see that (3.13) follows by “ε−squeezing”.



 
 

CHAPTER 4

Intermediate Steps Towards Weighted
Approximations

O’Reilly’s Theorem (1974)

O’Reilly’s theorem was in a sense an intermediate step towards the
development of the weighted approximation methodology, since the
search for an easy and transparent proof of it led to the creation of
the first weighted approximation of the uniform empirical process by
a sequence of Brownian bridges. Here is a statement of O’Reilly’s
theorem.

O’Reilly’s Theorem Let q be a positive function on (0, 1), increasing
on (0, 1/2] and decreasing on [1/2, 1). For any probability space such
that

sup
0<t<1

|α̃n (t)−Bn (t)| →p 0,

where {α̃n} is a sequence of probabilistically equivalent versions of
{αn}, and {Bn} is an appropriate sequence of Brownian bridges, one
also has

sup
0<t<1

|α̃n (t)−Bn (t)| /q (t)→p 0

if and only if for all c > 0,

(4.1) I(c, q) :=

∫ 1

0

(s (1− s))−1 exp

(
− cq2 (s)

s(1− s)

)
ds <∞.

The crucial fact established by O’Reilly (1974) was that

lim
δ↘0

(
sup

0<s≤δ
|B(s)| /q (s) + sup

0<s≤δ
|B(1− s)| /q (1− s)

)
= 0, a.s.

if and only if for all c > 0, I(c, q) <∞.

Chung’s Law of the Iterated Logarithm for αn

Let X1, X2, . . . , be a sequence of i.i.d. random variables with mean µ
and variance σ2. The law of the iterated logarithm [LIL] says that with
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probability 1,

lim sup
n→∞

±
∑n

i=1Xi − nµ√
2n log log n

= σ.

Applying this to the uniform empirical process αn at a fixed 0 ≤ t ≤ 1,
gives with probability 1,

lim sup
n→∞

± αn (t)√
2 log log n

=
√
t(1− t).

The Chung (1949) Law of the Iterated Logarithm for αn says that with
probability 1,

lim sup
n→∞

sup0≤t≤1±αn (t)
√

2 log log n
= sup

0≤t≤1

√
t(1− t) =

1

2
.

For the general empirical process we get that with probability 1,

lim sup
n→∞

sup−∞<x<∞±αn,F (x)√
2 log log n

= sup
−∞<x<∞

√
F (x) (1− F (x).

Note that if F is not continuous it may happen that

sup
−∞<x<∞

√
F (x) (1− F (x) <

1

2
.

One of the implications of the Chung LIL is that it is impossible
to define a sequence of independent Uniform (0, 1) random variables
U1, U2, . . . , and a fixed Brownian bridge B on the same probability
space so that with probability 1

(4.2) lim
n→∞

sup
0≤t≤1

|αn (t)−B(t)| = 0.

To see this, clearly we have

lim sup
n→∞

sup0≤t≤1 |B(t)|
√

log log n
= 0,

but, with probability 1,

lim sup
n→∞

sup0≤t≤1 |αn (t)|
√

2 log log n
=

1

2
,

which contradicts (4.2).

Our next result shows that (4.2) can hold when B is replaced by an
appropriate sequence of Brownian bridges {Bn}n≥1.
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The KMT (1975) Approximation

Komlós, Major and Tusnády [KMT] (1975) published the following
remarkable Brownian bridge approximation to the uniform empirical
process.

Theorem [KMT] There exists a probability space (Ω, A, P ) with in-
dependent Uniform (0, 1) random variables U1, U2, . . . , and a sequence
of Brownian bridges B1, B2, . . . , such that for all n ≥ 1 and −∞ <
x <∞,

(4.3) P

{
sup

0≤t≤1
|αn(t)−Bn(t)| ≥ n−1/2(a log n+ x)

}
≤ b exp(−cx),

where a, b and c are suitable positive constants independent of n and
x.

Notice that when inequality (4.3) is combined with the Borel–Cantelli
lemma we get the rate of approximation

sup
0≤t≤1

|αn(t)−Bn(t)| = O

(
log n√
n

)
, a.s.

For some time people did not know what to do with the KMT (1975)
approximation to the uniform empirical process. This was complicated
by the fact that KMT (1975) only provided a sketch of its proof. Com-
plete proofs are now available. Consult Mason and van Zwet (1987)
with additional notes in Mason (2001a), Péter Major’s website, Bre-
tagnolle and Massart (1989), Major (1999) and Dudley (2000). Bretag-
nolle and Massart (1989) determined values for the constants in (4.3),
namely a = 12, b = 2 and c = 1/6. In Section 1.4 of the second
edition of his book Uniform Central Limit Theorems, Dudley (2014)
includes a full proof of the Bretagnolle and Massart (1989) result. A
detailed discussion of the quantile transform methodology upon which
these proofs are based is given in Mason and Zhou (2012).

As aside we should mention that KMT (1975) also proved the following
Kiefer process approximation to αn.

Theorem [KMT(KP)] There exists a probability space (Ω, A, P ) with
independent Uniform (0, 1) random variables U1, U2, . . . , and a se-
quence of independent Brownian bridges B1, B2, . . . , such that for all
n ≥ 1 and −∞ < x <∞,

P

{
sup

0≤t≤1
|αn(t)− n−1/2

n∑
i=1

Bi(t)| ≥ n−1/2 log n(a1 log n+ x)

}
≤ b1 exp(−c1x),(4.4)
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where a1, b1 and c1 are suitable positive constants independent of n and
x.

We should point out that the probability space of KMT is not the same
at the probability space of KMT(KP). We see that on the probability
space of KMT(KP)

(4.5) sup
0≤t≤1

|αn(t)− n−1/2

n∑
i=1

Bi(t)| = O

(
(log n)2

√
n

)
, a.s.

Shorack (1979) was able to use KMT (1975) to give a simple proof of
O’Reilly’s theorem under the additional assumption that q (t) /t1/2 ↗
∞ and q (1− t) /t1/2 ↗ ∞ as t ↘ 0. In this case, it is readily verified
that I (q, c) <∞ for all c > 0 is equivalent to, as t↘ 0,
(4.6)

q (t) / (t log log (1/t))1/2 →∞ and q (1− t) / (t log log (1/t))1/2 →∞.
However, not all q for which (4.1) is finite for all c > 0 satisfy (4.6).
(See M. Csörgő (1983).)



 
 

CHAPTER 5

The First Weighted Approximation

A much stronger result than the O’Reilly theorem is the following
weighted approximation in probability of special versions of the αn’s
by a sequence of Brownian bridges {Bn}n≥1.

Theorem 1. On a rich enough probability space there exists a se-
quence of independent Uniform (0, 1) random variables U1, U2, . . . , and
a sequence of Brownian bridges B1, B2, . . . , such that for the uniform
empirical processes αn based on the Ui’s and all 0 < ν < 1

4

(5.1) sup
0≤t≤1

|αn(t)−Bn(t)|
(t(1− t))1/2−ν = Op(n

−ν).

Moreover, statement (5.1) remains true for ν = 0 when Bn is replaced
by Bn, where for n ≥ 2

(5.2) Bn(t) = Bn (t) 1 {t ∈ [1/n, 1− 1/n]} .
M. Csörgő, S. Csörgő, Horváth and Mason [Cs-Cs-H-M] (1986) proved
this result in 1983 during a hot and sweaty Szeged summer. Mason and
van Zwet (1987) obtained the best possible version of it during a deeply
overcast March 1985 in Leiden, allowing 0 ≤ ν < 1

2
. (Extreme weather

must be good for mathematics.) Both of these results were based upon
the strong approximation methods and results of KMT (1975). Later it
was discovered that a very useful version of this result could be derived
using the Skorohod embedding. More will be said about this later.

Miklós Csörgő, Sándor Csörgő and I introduced our results at a March
1984 Oberwolfach Conference on Order Statistics, Quantile Processes,
and Extreme Value theory in a three part series of lectures entitled,
A new approximation for the uniform empirical and quantile processes
with applications. (Lajos Horváth was unable to attend on account of
visa problems.) Our lectures created a bit of stir. At the meeting,
Sándor Csörgő, Paul Deheuvels and I wrote one of the first papers to
apply these approximations. In the years that followed I was able to
attract a number of talented collaborators to work with me on exten-
sions and applications of Cs-Cs-H-M (1986). They include Jan Beirlant,
Paul Deheuvels, John Einmahl, Uwe Einmahl, Erich Haeusler, Galen
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Shorack, Tatyana Turova and Willem van Zwet. Much of my work with
them will be described in the notes that follow.

The Goal of Weighted Approximations

The goal of the weighted approximation technique is to transfer the
asymptotic distributional analysis of a sequence of functionals of the
uniform empirical process αn to that of a sequence of functionals of
Brownian bridges Bn.

Example 1: O’Reilly’s Theorem Revisited

Only assume that q (s) /s1/2 and q (1− s) /s1/2 →∞ as s↘ 0. (Any q
function for which I (c, q) <∞ for some c > 0 satisfies this condition,
however, for every function satisfying this condition it is not always
true that I (c, q) < ∞ for some c > 0.) Assume that we are on the
probability space of Theorem 1. It is easy to show that

sup
0≤t≤1

|αn(t)−Bn(t)| = op(1),

when combined with

sup
0≤t≤1

|αn(t)−Bn(t)|
(t(1− t))1/2

= Op(1)

gives for any such q

sup
0<t<1

|αn(t)−Bn(t)|
q (s)

= op(1).

So clearly the underlying rationale behind O’Reilly’s conditions was to
characterize when

sup
0<s≤1/n

|Bn(s)| /q (s)→P 0, as n→∞,

and

sup
0<s≤1/n

|Bn(1− s)| /q (1− s)→P 0, as n→∞.

Example 2: Asymptotic Distribution of Rényi–Type Statistics

Let an be any sequence of positive constants such that 0 < an < β < 1,
for some 0 < β < 1, and nan →∞. Csáki (1974) established by direct
combinatorial methods the somewhat surprising result that(

an
1− an

)1/2

sup
an≤s≤1

αn (s)

s
→d sup

0≤s≤1
W (s) ,

where W is a standard Wiener process on [0, 1].
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Proof. Choose 0 < ν < 1/4. Now on the probability space of
Theorem 1, (

an
1− an

)1/2

sup
an≤s≤1

∣∣∣∣αn (s)−Bn(s)

s

∣∣∣∣
≤
(

an
1− an

)1/2
nν
√
an

sup
an≤s≤1

∣∣∣∣αn (s)−Bn(s)

s1/2−ν

∣∣∣∣ 1

(nan)ν
= oP (1).

But {(
an

1− an

)1/2
B (s)

s
, an ≤ s ≤ 1

}

=d

{
W

((
an

1− an

)
1− s
s

)
, an ≤ s ≤ 1

}
.

Thus

sup
an≤s≤1

(
an

1− an

)1/2
B (s)

s
=d sup

0≤t≤1
W (t) ,

which completes the proof. For a generalized version of this result refer
to Mason (1985), and for applicable versions of the Rényi confidence
bands, also obtained by similar ideas, see S. Csörgő (1998) and Megyesi
(1998).

A Typical Application of Weighted Approximations

Often one is interested in establishing the asymptotic normality of an
integral function of a process vn, say,

In =

∫ 1

0

vn(t)dµn(t),

where µn is some measure on (0, 1). Whenever there exists a weighted
approximation of vn by a Brownian bridge Bn, one can typically show
that for any τ > 0,∣∣∣∣∣

∫ 1−τ/n

τ/n

vn(t)dµn(t)−
∫ 1−τ/n

τ/n

Bn(t)dµn(t)

∣∣∣∣∣ ≤
sup

τ
n
≤t≤1− τ

n

nν |vn(t)−Bn(t)|
(t(1− t))1/2−ν

∫ 1−τ/n
τ/n

(t(1− t))1/2−νdµn(t)

nν

 = op(1).

This is the crucial step to approximate In directly by the normal ran-
dom variable ∫ 1

0

Bn(t)dµn(t)

and establish the asymptotic normality of In–should it, in fact, be
asymptotically normal.
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Example 3: A Central Limit Theorem for Winsorized–type
Sums

Let X,X1, X2, ..., be a sequence of i.i.d. nondegenerate random vari-
ables with cdf F with left-continuous inverse function Q. Choose 0 <
a < 1− b < 1 and n ≥ 1, and consider the Winsorized–type sum

Wn(a, b) :=
n∑
i=1

[Xi1{Q(a) < Xi ≤ Q(1− b)}]

+
n∑
i=1

[Q(a)1{Xi ≤ Q(a)}+Q(1− b)1{Xi > Q(1− b)}].

Integrating by parts these sums can be written as

(5.3) n−1/2{Wn(a, b)− EWn(a, b)} = −
d

∫ 1−b

a

αn(s)dQ(s).

Set

(5.4) σ2(a, b) =

∫ 1−b

a

∫ 1−b

a

(s ∧ t− st)dQ(s)dQ(t) = Var W1(a, b).

We show below that if an and bn are sequences of positive constants
such that 0 < an < 1− bn < 1 for n ≥ 1, and as n→∞,

an → 0, nan →∞, bn → 0 and nbn →∞,
then

(N) Zn(an, bn) :=

∫ 1−bn

an

αn(s)dQ(s)/σ(an, bn)→d Z, as n→∞,

where Z is a standard normal random variable. This was a crucial step
in the S. Csörgő, Haeusler and Mason (1988a) probabilistic approach
to the asymptotic distribution of sums of independent, identically dis-
tributed random variables; see also S. Csörgő (1990) and S. Csörgő
and Megyesi (2002). The approach used here was first introduced by
Shorack (1972) to derive central limit theorems for sums of functions
of order statistics.

Proof of (N).

Denote the standard normal random variable

Zn :=

∫ 1−bn

an

Bn(s)dQ(s)/σ(an, bn).

Notice that on the probability space of Theorem 1,

|Zn(an, bn)− Zn| ≤
∫ 1/2

an

|αn(s)−Bn(s)|dQ(s)/σ(an, 1/2)
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+

∫ 1−bn

1/2

|αn(s)−Bn(s)|dQ(s)/σ(1/2, bn),

which for any 0 < ν < 1/4 is

≤ ∆n,ν(1)n−ν
∫ 1/2

an

(s(1− s))1/2−νdQ(s)/σ(an, 1/2)

+∆n,ν(1)n−ν
∫ 1−bn

1/2

(s(1− s))1/2−νdQ(s)/σ(1/2, bn),

where

∆n,ν(1) := sup
1/n≤t≤1−1/n

nν |αn(t)−Bn(t)|
(t(1− t))1/2−ν .

Using the fact (e.g. Inequality 2.1 of Shorack (1997)) that for any
0 < c < 1− d < 1 and 0 < v < 1/2,

(5.5)

∫ 1−d

c

(s(1− s))1/2−νdQ(s)/σ(c, d) ≤ (3/
√
ν)(c ∧ d)−ν ,

we see that this last bound is

≤ (3/
√
ν)(nan)−νOp(1) + (3/

√
ν)(nbn)−νOp(1) = op (1) .

Use of this result to prove asymptotic normality of interme-
diate trimmed sums

Let X1, . . . , Xn be i.i.d. F with order statistics X1,n ≤ · · · ≤ Xn,n.
Consider integers kn satisfying 1 ≤ kn ≤ n/2, n ≥ 3, kn → ∞ and
kn/n→ 0, and the intermediate trimmed sum

Tn (kn) =
n−kn∑
i=kn+1

Xi,n.

Under certain necessary and sufficient conditions (see S. Csörgő and
Haeusler and Mason (1988b))

(Z)
Tn (kn)− n

∫ 1−kn/n
kn/n

Q(u)du
√
nσ (kn/n, kn/n)

→d Z,

where Z is standard normal. The reason for the normality is that the
necessary and sufficient conditions for (Z) to hold give

Tn (kn)− n
∫ 1−kn/n
kn/n

Q(u)du
√
nσ (kn/n, kn/n)

+

∫ 1−kn/n
kn/n

αn(u)dQ(u)

σ (kn/n, kn/n)
= oP (1)
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and, as we have just shown, it is always true that∫ 1−kn/n
kn/n

αn(u)dQ(u)

σ (kn/n, kn/n)
→d Z.

Example 4: Central Limit Theorem for the Hill Estimator (S.
Csörgő and Mason (1985))

Let Y, Y1, . . . , Yn be i.i.d. G with a regularly varying upper tail with
index 1/c, c > 0, that is for all t > 0

1−G (xt)

1−G(x)
→ t−1/c, as x→∞.

Now set X = log (max(Y, 1)), Xi = log (max(Yi, 1)) , i = 1, . . . , n.
Further let X1,n ≤ · · · ≤ Xn,n denote the order statistics of X1, . . . , Xn.
The Hill estimator of c is

ĉn =
kn∑
i=1

Xn+1−i,n

kn
−Xn−kn,n,

where kn is a sequence of positive integers satisfying 1 ≤ kn < n, kn →
∞ and kn/n→ 0. Mason (1983) showed that for any such sequence

ĉn →P c, as n→∞.

Let F be the cdf of X and Q be its inverse. We see by the probability
integral transformation (2.24) that

ĉn =d

kn∑
i=1

Q (Un+1−i,n)

kn
−Q (Un−kn,n) .

Set

cn =
n

kn

∫ 1

1−kn/n
(1− s) dQ (s) .

One can verify that cn → c as n → ∞. Under additional assump-
tions (see S. Csörgő and Mason (1985)) it can be shown that on the
probability space of Theorem 1,√

kn (ĉn − cn) = Zn + oP (1),

where

Zn := −
√

n

kn

∫ 1

1−kn/n
Bn (s) dQ (s) + c

√
n

kn
Bn

(
1− kn

n

)
.
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The random variable Zn is normal with mean 0 and a variance, which
converges to c2 as n → ∞. The essential step in the proof is the
replacement∣∣∣∣√ n

kn

∫ 1

1−kn/n
αn (s) dQ (s)−

√
n

kn

∫ 1

1−kn/n
Bn (s) dQ (s)

∣∣∣∣ ,
which for any 0 < ν < 1/4 is

≤
√

n

kn

∫ 1

1−kn/n

|αn (s)−Bn (s)|
(1− s)1/2−ν (1− s)1/2−ν dQ (s)

≤ nν

kνn
sup

1− kn
n
≤s≤1

|αn (s)−Bn (s)|
(1− s)1/2−ν

∫ 1

1−kn/n
(1− s)1/2−ν dQ (s)

(
n

kn

)1/2−ν

,

which since

nν sup
1− kn

n
≤s≤1

|αn (s)−Bn (s)|
(1− s)1/2−ν = OP (1)

and ∫ 1

1−kn/n
(1− s)1/2−ν dQ (s)

(
n

kn

)1/2−ν

→ c

1/2− ν
, as n→∞,

is equal to oP (1).

For generalizations of this estimator refer to S. Csörgő, Deheuvels and
Mason (1985) and Groeneboom, Lopuhaä and de Wolf (2003). In both
of these papers the weighted approximation in Theorem 1 is the crucial
tool used in the derivation of the asymptotic distribution of the esti-
mators. For related applications of the method we refer to S. Csörgő
and Viharos (1995, 1998, 2002, 2006).

Further Applications of this Type

The Cs-Cs-H-M (1986) weighted approximation has been applied very
successfully in the study of

1. Central Limit Theorems for Trimmed Sums (as already pointed out)

n−kn∑
i=kn+1

Xi,n.

See S. Csörgő, Horváth and Mason (1986), S. Csörgő, Haeusler and
Mason (1988b) and S. Csörgő and Megyesi (2001).

2. Central Limit Theorems for Sums of Extreme Values

kn∑
i=1

Xi,n.
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See S. Csörgő and Mason (1986), S. Csörgő, Haeusler and Mason (1991)
and Viharos (1993, 1995).

3. Central Limit Theorems for L-statistics
n∑
i=1

ci,nXi,n.

See Mason and Shorack (1990, 1992).

4. Bootstrap See S. Csörgő and Mason (1989) and Deheuvels, Mason
and Shorack (1993).

5. Bahadur–Kiefer Processes See Deheuvels and Mason (1990) and
Beirlant, Deheuvels, J. Einmahl and Mason (1991). The Bahadur-
Kiefer process is defined below.

6. Goodness of fit tests See del Barrio, Cuesta–Albertos and Matrán
(2000) and S. Csörgő (2003).

For further applications refer to the proceedings volume edited by
Hahn, Mason and Weiner (1991), the monograph by M. Csörgő and
Horváth (1993) and the graduate probability text by Shorack (2000).



 
 

CHAPTER 6

The Mason and van Zwet Refinement of KMT

Mason and van Zwet (1987) obtained the following refinement of the
KMT (1975) Brownian bridge approximation to the uniform empirical
process.

Theorem 2. There exists a probability space (Ω, A, P ) with indepen-
dent Uniform (0, 1) random variables U1, U2, . . . , and a sequence of
Brownian bridges B1, B2, . . . , such that for all n ≥ 1, 1 ≤ d ≤ n, and
−∞ < x <∞,

(6.1) P

{
sup

0≤t≤d/n
|αn(t)−Bn(t)| ≥ n−1/2(a log d+ x)

}
≤ b exp(−cx)

and
(6.2)

P

{
sup

1−d/n≤t≤1

|αn(t)−Bn(t)| ≥ n−1/2(a log d+ x)

}
≤ b exp(−cx),

where a, b and c are suitable positive constants independent of n, d and
x.

Remark The probability space of Theorem 3 is in fact the KMT (1975)
space of Theorem KMT. Setting d = n into these inequalities yields
the original KMT inequality (4.3). Rio (1994) has computed values
for the constants in these inequalities. Cs-Cs-H-M (1986) had earlier
established that the analogs to these inequalities held with αn replaced
by βn (the uniform quantile process) on the probability space that they
constructed so that (5.1) is valid. The process βn is defined below and
the statements of the Cs-Cs-H-M inequalities are given in Chapter 8.

Mason and van Zwet Weighted Approximations

Mason and van Zwet (1987) pointed out that by arguing just as in Cs-
Cs-H-M (1983) their inequality leads to the following useful weighted
approximations. For any 0 ≤ ν < 1/2, n ≥ 1, and 1 ≤ d ≤ n let

(6.3) ∆(1)
n,ν(d) := sup

d/n≤t≤1

nν |αn(t)−Bn(t)|
t1/2−ν

,

39
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(6.4) ∆(2)
n,ν(d) := sup

0≤t≤1−d/n

nν |αn(t)−Bn(t)|
(1− t)1/2−ν ,

and for 1 ≤ d ≤ n/2,

(6.5) ∆n,ν(d) := sup
d/n≤t≤1−d/n

nν |αn(t)−Bn(t)|
(t(1− t))1/2−ν .

On the probability space of Theorem 2, one has

∆n,ν(1) = Op(1),

with the same holding with ∆n,ν(1) replaced by ∆
(1)
n,ν(1) and ∆

(2)
n,ν(1).

(Note that Theorem 1 would give these results in the restricted range
0 ≤ ν < 1/4.) Our next theorem improves these results.

An Exponential Inequality for the Weighted Approximation
to the Uniform Empirical Process

Motivated by a intriguing question brought to him by Evarist Giné, Ma-
son (2001b) derived the following exponential inequality for the Mason
and van Zwet weighted approximations.

Theorem 3. (An Improved Mason and van Zwet Result). On the
probability space of Theorem KMT, for every 0 ≤ ν < 1/2 there exist
positive constants Aν and Cν such that for all n ≥ 2, 1 ≤ d ≤ n/2 and
0 ≤ x <∞,

(6.6) P
{

∆(1)
n,ν(d) ≥ x

}
≤ Aν exp(d1/2−νCν) exp

(
−d

1/2−νcx

2

)
,

(6.7) P
{

∆(2)
n,ν(d) ≥ x

}
≤ Aν exp(d1/2−νCν) exp

(
−d

1/2−νcx

2

)
,

and

(6.8) P {∆n,ν(d) ≥ x} ≤ 2Aν exp(d1/2−νCν) exp

(
−d

1/2−νcx

4

)
.

Proof. Recall by the previous remark that the probability space of
Theorem KMT is that of Theorem 2. First consider (6.6). For any
1 ≤ i < i+ 1 ≤ n write

δi,n = P

{
sup

i/n≤t≤(i+1)/n

nν |αn(t)−Bn(t)|
t1/2−ν

≥ x

}
.

Set x = 2aν + z, where aν satisfies

aνi
1/2−ν > a log(i+ 1) for all i ≥ 1
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and the constant a is as in (6.1). We get then that

δi,n ≤ P

{
sup

0≤t≤(i+1)/n

|αn(t)−Bn(t)| ≥ n−1/2i1/2−νx

}
≤ P { sup0≤t≤(i+1)/n |αn(t)−Bn(t)|

≥ n−1/2(a log(i+ 1) + i1/2−νaν + i1/2−νz) } ,
which by (6.1) is

≤ b exp(−i1/2−νaνc) exp(−i1/2−νcz).

We see then that for any 1 ≤ d < n

P
{

∆(1)
n,ν(d) ≥ x

}
≤

n−1∑
i=[d]

δi,n ≤ b
∞∑
i=[d]

{exp(−i1/2−νaνc) exp(−i1/2−νcz)}

≤ Aν exp(−d1/2−νcz/2) = Aν exp(d1/2−νCν) exp(−d1/2−νcx/2),

where

Aν = b
∞∑
i=1

exp(−i1/2−νaνc) and Cν = aνc.

This proves inequality (6.6). Inequality (6.7) follows in the same way
and inequality (6.8) is an immediate consequence of (6.6) and (6.7). �

A Moment Bound for the Weighted Approximation

Theorem 3 readily yields the following uniform moment bounds for
(6.3), (6.4) and (6.5).

Proposition 1. On the KMT (1975) approximation probability space
for all 0 ≤ ν < 1/2 there exists a γ > 0 such that

sup
n≥2

E exp (γ∆n,ν(1)) <∞,

with the same statement holding with ∆n,ν(1) replaced by ∆
(1)
n,ν(1) or

∆
(2)
n,ν(1). In particular, we have for all r > 0

sup
n≥2

E∆r
n,ν(1) <∞.

A Functional Version

Now for each integer n ≥ 2 let Rn denote a class of nondecreasing left-
continuous functions r on [1/n, 1−1/n]. Assume there exists a sequence
of positive constants dn such that for some 0 ≤ ν < 1/2

(6.9) sup
n≥2

sup
r∈Rn

d−1
n

∫ 1−1/n

1/n

(s(1− s))1/2−νdr(s) =: M <∞.
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From Proposition 1 we obtain

Proposition 2. Let {Rn, n ≥ 2} denote a sequence of classes of non-
decreasing left-continuous functions on [1/n, 1 − 1/n] satisfying (6.9)
for some 0 ≤ ν < 1/2. On the probability space of the KMT (1975)
approximation (4.3) there exists a γ > 0 such that

sup
n≥2

E exp(γnνIn) <∞,

where

In := sup
r∈Rn

d−1
n

∫ 1−1/n

1/n

|αn(s)−Bn(s)|dr(s).

Proposition 2 follows trivially from Proposition 1 by observing that
nνIn ≤ ∆n,ν(1)M.



 
 

CHAPTER 7

Use of Theorem 3 to Study the Wasserstein
Distance

We shall first need some background and a definition.

The Domain of Attraction to a Normal Law

LetX,X1, X2, . . . , be a sequence of independent nondegenerate random
variables with cdf F and left-continuous inverse or quantile function Q.
We say that F is in the domain of attraction of a normal law, written
F ∈ DN, if there exist norming and centering constants bn and cn such
that ∑n

i=1Xi − cn
bn

→d Z,

where Z is a standard normal random variable. S. Csörgő, Haeusler
and Mason (1988a) show that when F ∈ DN one can always choose
for n ≥ 2, cn = nEX and bn =

√
nσ (1/n) , where for any 0 < u < 1/2

(7.1) σ2 (u) := σ2 (u, u) =

∫ 1−u

u

∫ 1−u

u

(s ∧ t− st) dQ (s) dQ (t) .

For future reference we shall write for any 0 < u < 1/2

(7.2) τ 2 (u) =

(∫ 1−u

u

√
s (1− s)dQ (s)

)2

,

and note that

(7.3) τ 2 (u) ≥ σ2 (u) .

It turns out, recall (5.4), that

σ2 (u) = V arW1 (u) = V ar

(∫ 1−u

u

(1 {U ≤ t} − t) dQ (t)

)
,

where U is Uniform (0, 1). Furthermore σ2 (0) <∞ if and only if V arX
is finite.
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Now with Fn(x) = 1
n

∑n
i=1 1 {Xi ≤ x} , − ∞ < x < ∞, we have by

(2.25)∑n
i=1Xi − nEX

bn
=

∫∞
−∞
√
n {F (x)− Fn(x)} dx

σ (1/n)
=d

−
∫ 1

0
αn(s)dQ (s)

σ (1/n)
.

In fact one can use the weighted approximation technology as we did
in our discussion of Winsorized sums to show that whenever F ∈ DN∫ 1

0
αn(s)dQ (s)

σ (1/n)
=

∫ 1−1/n

1/n
Bn(s)dQ (s)

σ (1/n)
+ op (1) =d Z + op (1) .

Crucial to the proof is the fact established in Corollary 1 of S. Csörgő,
Haeusler and Mason (1988a) that F ∈ DN if and only if

(7.4) lim
u↘0

u
(
Q2 (λu) +Q2 (1− λu)

)
/σ2 (u) = 0, for all λ > 0

if and only if σ is slowly varying at zero, i.e.

(7.5) lim
u↘0

σ2 (λu) /σ2 (u) = 1, for all λ > 0.

The Wasserstein distance

Recall that the Wasserstein distance between between any two cdfs F
and G with finite means is

d1 (G,F ) =

∫ ∞
−∞
|G(x)− F (x)| dx.

In particular, the (empirical) Wasserstein distance between Fn, based
on X1, , . . . , Xn i.i.d. F , and F is

d1 (Fn, F ) =

∫ ∞
−∞
|Fn(x)− F (x)| dx =d

∫ 1

0

|Gn(t)− t| dQ (t) ,

where Q is defined as in (2.23). Note that d1 (Fn, F ) is finite as long
as E |X1| <∞. d1 (Fn, F ) also has the representation

d1 (Fn, F ) =

∫ 1

0

|Qn(t)−Q (t)| dt,

withQn as in (8.5), (See for instance, Exercise 3 on page 64 of SW(1986).)
Observe that by (2.25)

√
nd1 (Fn, F ) =d

∫ 1

0

|αn (t)| dQ (t) .

We shall show how to use Theorem 3 and Proposition 1 to obtain rates
of convergence of Ed1 (Fn, F ) to zero. This will lead to refinements and
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complements of Theorem 6.7 of Bobkov and Ledoux (2014), which in
our notation says that for a universal constant c > 0,

2c

∫
{t:t(1−t)≤ 1

4n}
t(1− t)dQ (t) +

2c√
n

∫
{t:t(1−t)> 1

4n}

√
t(1− t)dQ (t)

≤ Ed1 (Fn, F )

(7.6)

≤
∫
{t:t(1−t)≤ 1

4n}
t(1− t)dQ (t) +

1√
n

∫
{t:t(1−t)> 1

4n}

√
t(1− t)dQ (t) ,

where c may chosen to be 1
2
5−4. They base their proof on their Lemma

3.8, a version of which is stated in (7.23) below. Our first result along
this line is the following proposition.

Proposition 3 For any quantile function Q and p > 1,

(7.7)

∫ 1− 1
n

1
n

E |αn (t)| dQ (t) =

∫ 1− 1
n

1
n

E |B (t)| dQ (t) (1 +O (1))

(7.8) =

√
2

π

∫ 1− 1
n

1
n

√
t (1− t)dQ (t) (1 +O (1)) ,

where B is a Brownian bridge on [0, 1] and the big Oh term in (7.8)

is bounded in absolute value by cp (r (1/n))1−1/p for some constant cp
depending on p and

(7.9) r (1/n) =

∣∣Q ( 1
n

)∣∣+
∣∣Q (1− 1

n

)∣∣
n1/2

∫ 1− 1
n

1
n

√
t (1− t)dQ (t)

.

Furthermore, if

(7.10) r (1/n)→ 0, as n→∞,

then

(7.11)

∫ 1− 1
n

1
n

E |αn (t)| dQ (t) =

∫ 1− 1
n

1
n

E |B (t)| dQ (t) (1 + o (1)) .

Proof. Note that for any finite measure µ on
[

1
n
, 1− 1

n

]
and func-

tions f and g in L1

([
1
n
, 1− 1

n

]
, µ
)
,∣∣∣∣∣

∫ 1− 1
n

1
n

E |f (t)| dµ (t)−
∫ 1− 1

n

1
n

E |g (t)| dµ (t)

∣∣∣∣∣
≤
∫ 1− 1

n

1
n

E |f (t)− g (t)| dµ (t) .
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Applying this fact we get with obvious choices of f , g and µ∣∣∣∣∣
∫ 1− 1

n

1
n

E |αn (t)| dQ (t)−
∫ 1− 1

n

1
n

E |B (t)| dQ (t)

∣∣∣∣∣
≤
∫ 1− 1

n

1
n

E |αn (t)−Bn (t)| dQ (t) .

This last bound is, in turn, with v = 1/2− 1/ (2p) (1/2− v = 1/ (2p))

≤ E∆n,ν (1)

∫ 1− 1
n

1
n

(t (1− t))1/2−v dQ (t)n−v

= E∆n,ν (1)

∫ 1− 1
n

1
n

(t (1− t))1/(2p) dQ (t)n−1/2+1/(2p),

which by an application of Proposition 1 is for some positive constant
Cp,

(7.12) ≤ Cp

∫ 1− 1
n

1
n

(t (1− t))1/(2p) dQ (t)n−1/2+1/(2p)

and by Hölder’s inequality is

≤ Cp

(∫ 1− 1
n

1
n

√
t (1− t)dQ (t)

)1/p

×
(∣∣∣∣Q( 1

n

)∣∣∣∣+

∣∣∣∣Q(1− 1

n

)∣∣∣∣)1−1/p

n−1/2+1/(2p)

= Cp

∫ 1− 1
n

1
n

√
t (1− t)dQ (t)

 ∣∣Q ( 1
n

)∣∣+
∣∣Q (1− 1

n

)∣∣
n1/2

∫ 1− 1
n

1
n

√
t (1− t)dQ (t)


1−1/p

.

Noting that for each t ∈ (0, 1),

(7.13) E |B (t)| = E |Z|
√
t (1− t) =

√
2

π

√
t (1− t),

we see that for cp = Cp
√

π
2

the last bound

=

∫ 1− 1
n

1
n

E |B (t)| dQ (t) cp (r (1/n))1−1/p .

Notice that by (7.3)

(7.14) r2 (1/n) ≤ 2n−1

(
Q2

(
1

n

)
+Q2

(
1− 1

n

))
/σ2 (1/n) ,
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where σ2 (1/n) is defined in (7.1). It is shown in the proof of Lemma
2.1 of Csörgő, Haeusler and Mason (1988b) that

(7.15) lim sup
n→∞

n−1

(
Q2

(
1

n

)
+Q2

(
1− 1

n

))
/σ2 (1/n) ≤ 1.

Therefore under absolutely no conditions on Q we have (7.7). Whereas
if (7.10) holds we have (7.11). �

Corollary 1 If F ∈ DN , then

(7.16)

∫ 1

0

E |αn (t)| dQ (t) =

∫ 1− 1
n

1
n

E |B (t)| dQ (t) (1 + o (1)) .

Proof. If F ∈ DN , by (7.14) and (7.4), (7.10) holds. Thus

(7.17)

∫ 1− 1
n

1
n

E |αn (t)| dQ (t) =

∫ 1− 1
n

1
n

E |B (t)| dQ (t) (1 + o (1)) .

To finish the proof it suffices to prove that

(7.18)

(∫ 1
n

0

E |αn (t)| dQ (t) +

∫ 1

1− 1
n

E |αn (t)| dQ (t)

)
/τ (1/n)→ 0.

Since τ (1/n) ≥ σ
(

1
n

)
, to show this it is enough to verify that

(7.19)

(∫ 1
n

0

E |αn (t)| dQ (t) +

∫ 1

1− 1
n

E |αn (t)| dQ (t)

)
/σ (1/n)→ 0.

Notice that since E |αn (t)| ≤ 2
√
nt, we have∫ 1

n

0

E |αn (t)| dQ (t) /σ (1/n) ≤ 2
√
n

∫ 1
n

0

tdQ (t) /σ (1/n)

≤

(
2√
n

∣∣∣∣Q( 1

n

)∣∣∣∣+ 2
√
n

∫ 1
n

0

|Q (t)| dt

)
/σ (1/n)

≤

(
2√
n

∣∣∣∣Q( 1

n

)∣∣∣∣+ 2
√
n

∫ 1
n

0

t−1/2σ (t) dt sup
0<t≤1/n

√
t |Q (t)|
σ (t)

)
/σ (1/n)

=
2√
n

∣∣Q ( 1
n

)∣∣
σ (1/n)

+ o(1) = o(1),

where in the last step we use the facts that F ∈ DN is equiva-
lent to σ being slowly varying at zero and that F ∈ DN implies

sup0<t≤1/n

√
t|Q(t)|
σ(t)

= o(1). (We pointed out these two facts in (7.4) and

(7.5) above.) This proves the first part of (7.19). The second part of
(7.19) is proved in the same way. �
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Remark Notice that in the special case when F is symmetric about
zero and F (x) = 1

2
(1 + x)−2 for x ≥ 0, we have F ∈ DN and∫ 1

0

E |αn (t)| dQ (t) ∼ log n√
π

, as n→∞ .

Remark Clearly (7.16) holds whenever r (1/n) → 0, as n → ∞. It
also implies, as n→∞,
(7.20)(∫ 1/n

0

E |αn (t)| dQ (t) +

∫ 1

1−1/n

E |αn (t)| dQ (t)

)
/τ (1/n)→ 0.

The proof of Corollary 1 shows that whenever F ∈ DN , both r (1/n)→
0, as n→∞, and (7.20) hold.

Assuming that E |X| <∞, write for 0 < u ≤ 1/2 and n ≥ 2,
(7.21)

βn (u) =
√
n

∫ u

0

tdQ (t)+
√
n

∫ 1

1−u
(1− t) dQ (t) =: βn,(−) (u)+βn,(+) (u) .

Observation Whenever E |X| <∞, (7.20) is satisfied if and only if

(7.22) βn (1/n) /τ (1/n)→ 0, as n→∞.
Proof. Lemma 3.8 of Bobkov and Ledoux (2014) says that for an

absolute constant c > 0 for all 0 ≤ t ≤ 1,

cmin
{

2
√
nt (1− t) ,

√
t (1− t)

}
≤ E |αn (t)|

(7.23) ≤ min
{√

n2t (1− t) ,
√
t (1− t)

}
,

where c may chosen to be 1
2
5−4. This implies that for all 0 < t ≤ 1/n

with 1/n ≤ 1/2

c
√
nt

2
= cmin

{√
nt

2
,

√
t

2

}
≤ cmin

{√
nt (1− t) ,

√
t (1− t)

}
≤ E |αn (t)| ≤ 2

√
nt (1− t) .(7.24)

Using this inequality, we get for n ≥ 2,

c
√
n

2

∫ 1/n

0

tdQ (t) ≤
∫ 1/n

0

E |αn (t)| dQ (t) ≤ 2
√
n

∫ 1/n

0

tdQ (t) .

Obviously this implies that βn,(−) (1/n) /τ (1/n) → 0, as n → ∞, if
and only if(∫ 1/n

0

E |αn (t)| dQ (t)

)
/τ (1/n)→ 0, as n→∞.
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In the same way using the version of inequality (7.24) with t replaced
by 1− t, we get βn,(+) (1/n) /τ (1/n)→ 0, as n→∞, if and only if(∫ 1

1−1/n

E |αn (t)| dQ (t)

)
/τ (1/n)→ 0, as n→∞.

�

Remark Whenever

(7.25) 0 <

∫ ∞
−∞

√
F (x) (1− F (x))dx =

∫ 1

0

√
s(1− s)dQ (s) <∞,

we have

V arX = σ2 (0) =

∫ 1

0

∫ 1

0

(s ∧ t− st) dQ (s) dQ (t)

≤
(∫ 1

0

√
s(1− s)dQ (s)

)2

<∞,

which implies 0 < V arX < ∞, and thus F ∈ DN . Hence we infer
from (7.20)∫ 1

0

E |αn (t)| dQ (t)−
∫ 1− 1

n

1
n

E |αn (t)| dQ (t)→ 0

and from (7.25) that∫ 1

0

E |B (t)| dQ (t)−
∫ 1− 1

n

1
n

E |B (t)| dQ (t)→ 0,

and thus since r2 (1/n)→ 0 we can conclude by (7.16) that∫ 1

0

E |αn (t)| dQ (t)→
∫ 1

0

E |B (t)| dQ (t) <∞.

Proposition 4 For any quantile function Q, any p > 1 and any se-
quences of positive numbers 0 < cn < 1− dn < 1, n ≥ 1,∣∣∣∣∫ 1−dn

cn

E |αn (t)| dQ (t)−
∫ 1−dn

cn

E |B (t)| dQ (t)

∣∣∣∣
(7.26) ≤

√
π

2
Cp(3/

√
ν)(n (cn ∧ dn))−ν)

∫ 1−dn

cn

E |B (t)| dQ (t) ,

where ν = 1/2−1/ (2p). In particular, if n (cn ∧ dn)→∞, as n→∞,

(7.27)

∫ 1−dn

cn

E |αn (t)| dQ (t) =

∫ 1−dn

cn

E |B (t)| dQ (t) (1 + o (1)) .
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Proof. Notice that for 0 < c < 1− d < 1

σ2(c, d) =

∫ 1−d

c

∫ 1−d

c

(s ∧ t− st) dQ (s) dQ (t)

≤
(∫ 1−d

c

√
s(1− s)dQ (s)

)2

,

and we get by the Shorack (1997) fact (5.5) that for any 0 < c < 1−d <
1 and 0 < v < 1/2,∫ 1−d

c

(s(1− s))1/2−νdQ(s)/

∫ 1−d

c

√
s(1− s)dQ (s) ≤ (3/

√
ν)(c ∧ d)−ν .

We see then that as in the proof of Proposition 3 that for any p > 1
with v = 1/2− 1/ (2p),∣∣∣∣∫ 1−dn

cn

E |αn (t)| dQ (t)−
∫ 1−dn

cn

E |B (t)| dQ (t)

∣∣∣∣
≤ Cp

∫ 1−dn

cn

(t (1− t))1/(2p) dQ (t)n−1/2+1/(2p)

= Cp

∫ 1−dn
cn

(t (1− t))1/(2p) dQ (t)∫ 1−dn
cn

√
s(1− s)dQ (s)

n−1/2+1/(2p)

∫ 1−dn

cn

√
s(1− s)dQ (s)

≤
√
π

2
Cp(3/

√
ν)(n (cn ∧ dn))−ν)

√
2

π

∫ 1−dn

cn

√
s(1− s)dQ (s)

=

√
π

2
Cp(3/

√
ν)(n (cn ∧ dn))−ν)

∫ 1−dn

cn

E |B (t)| dQ (t) .

�

We immediately get the following corollary.

Corollary 2 If E |X| <∞, then for all 0 < ε < 1 there exists a k > 0
such that for k/n ≤ 1/2∫

(0,1)−[k/n,1−k/n]

E |Gn (t)− t| dQ (t)+
1√
n

∫ 1−k/n

k/n

E |B (t)| dQ (t) (1− ε)

≤ Ed1 (Fn, F )

(7.28)

≤
∫

(0,1)−[k/n,1−k/n]

E |Gn (t)− t| dQ (t)+
1 + ε√
n

∫ 1−k/n

k/n

E |B (t)| dQ (t) .
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Note that whenever E |X| <∞, by applying inequality (7.23), we get
for n ≥ k/2,
(7.29)∫

(0,1)−[k/n,1−k/n]

E |Gn (t)− t| dQ (t) ≤ 2

∫
(0,1)−[k/n,1−k/n]

t (1− t) dQ (t) ,

where the right side of (7.29) is finite. Furthermore we can say that for
any 0 < ε < 1 there exists a k > 0 such that for large enough n ≥ 1

1√
n

∫ 1−k/n

k/n

E |B (t)| dQ (t) (1− ε) ≤ Ed1 (Fn, F )

≤ ε+
1√
n

∫ 1−k/n

k/n

E |B (t)| dQ (t) (1 + ε) .

A Result of del Barrio, Giné and Matrán (1999)

Set

Wn = n

∫ ∞
−∞
|Fn(x)− F (x)| dx.

Del Barrio, Giné and Matrán (1999) using the weighted approximation
of Theorem 1, derived the asymptotic distribution of Wn whenever
F ∈ DN and satisfies some additional conditions. For instance, if
(7.25) is satisfied then
(7.30)
√
n

∫ ∞
−∞
|Fn(x)− F (x)| dx =d

∫ 1

0

|αn(s)| dQ (s)→d

∫ 1

0

|B(s)| dQ (s) .

Condition (7.25) is a bit stronger than 0 < V arX = σ2 <∞ and it is
necessary for the limit integral to exist. Notice that if we remove the
absolute values signs in (7.30) we get the usual central limit theorem,
namely, in the 0 < σ2 <∞ case

√
n

∫ ∞
−∞
{Fn(x)− F (x)} dx→d σZ =d

∫ 1

0

B (s)Q (s) .

Along the way, in their study, del Barrio, Giné and Matrán (1999)
proved that whenever F ∈ DN, for all 0 < r < 2,

(7.31) sup
n≥1

E

∣∣∣∣Wn − EWn

bn

∣∣∣∣r <∞.
We shall demonstrate how Theorem 3 leads to a quick proof of this
result. This was the original motivation for the Giné question alluded
to in the previous chapter.
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An Equivalent Version of the del Barrio, Giné and Matrán
Result (7.31)

Observing that by the probability integral transformation,

Wn =d n

∫ 1

0

|Gn(t)− t| dQ(t),

we see that their result is equivalent to, for all 0 < r < 2,

(7.32) sup
n≥2

E

∣∣∣∣∣
∫ 1

0
{|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n)

∣∣∣∣∣
r

<∞.

In a separate technical lemma they showed that whenever F ∈ DN,
for all 0 < r < 2,

(7.33) sup
n≥2

E

∣∣∣∣∣
∫

[1/n,1−1/n]C
{|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n)

∣∣∣∣∣
r

<∞

and they used Talagrand’s (1996) exponential inequality to prove that
for all r > 0,

(7.34) sup
n≥2

E

∣∣∣∣∣∣
∫ 1−1/n

1/n
{|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n)

∣∣∣∣∣∣
r

<∞.

Clearly (7.33) and (7.34) imply (7.31).

A Weighted Approximation Approach to (7.34)

Giné asked the question whether it is true that on the space of Theorem
2 for all r > 0,

(7.35) sup
n≥2

E

[
sup

1/n≤t≤1−1/n

nν |αn(t)−Bn(t)|
(t(1− t))1/2−ν

]r
<∞?

In which case, a weighted approximation approach could be used to
show that for all r > 0, (7.34) holds.

This was the motivation for the author to establish Theorem 2, which
we have shown in Proposition 1 implies (7.35). We shall use Proposition
2 and some pieces from del Barrio, Giné and Matrán (1999) to prove
that (7.34) holds for all r > 0, under no assumptions on F. Their proof
of (7.34), based on Talagrand (1996), assumes F ∈ DN.
Our aim will be to transfer our study of the moment behavior of∫ 1−1/n

1/n
{|αn(t)| − E |αn(t)|} dQ(t)

σ (1/n)



 
 

7. USE OF THEOREM 3 TO STUDY THE WASSERSTEIN DISTANCE 53

to that of ∫ 1−1/n

1/n
{|Bn(t)| − E |Bn(t)|} dQ(t)

σ (1/n)
.

What follows is somewhat technical, however, it demonstrates nicely
the power of Theorem 3.

Step 1.

For any quantile function Q, one has for any 0 < ν < 1/2 (see the
Shorack (1997) fact (5.5))

sup
n≥2

∫ 1−1/n

1/n
(s(1− s))1/2−νdQ(s)

nνσ (1/n)
≤ 3√

ν
.

Thus from Proposition 2, (with M = 3√
ν

and dn = nνσ (1/n)), we get

for any 0 < ν < 1/2, on the probability space of the KMT (1975)
approximation there exists a γ > 0 such that

(7.36) sup
n≥2

E exp(γnνIn) <∞,

where

In :=

∫ 1−1/n

1/n
|αn(s)−Bn(s)|dQ(s)

nνσ (1/n)
.

Step 2.

Noting that

nνIn =

∫ 1−1/n

1/n
|αn(s)−Bn(s)|dQ(s)

σ (1/n)
.

we see that (7.36) implies that for any r > 0

(7.37) sup
n≥2

E

∣∣∣∣∣∣
∫ 1−1/n

1/n
{|αn(s)| − |Bn(s)|} dQ(s)

σ (1/n)

∣∣∣∣∣∣
r

<∞

Step 3

To finish the proof it clearly suffices to show that for all r > 0

(7.38) sup
n≥2

E

∣∣∣∣∣∣
∫ 1−1/n

1/n
{|Bn(t)| − E |Bn(t)|} dQ(t)

σ (1/n)

∣∣∣∣∣∣
r

<∞.

By recopying steps from the proof of Theorem 5.1 of del Barrio, Giné
and Matrán, (also see their Proposition 6.2), based on the Borell (1975)
inequality, one gets the exponential inequality, for all t > 0



 
 

54 7. USE OF THEOREM 3 TO STUDY THE WASSERSTEIN DISTANCE

P


∣∣∣∫ 1−1/n

1/n
{|B(t)| − E |B(t)|} dQ (t)

∣∣∣
σ (1/n)

> t

 ≤ 2 exp

(
−2t2

π2

)
,

which clearly implies (7.38).

Notice again that absolutely no assumptions are required on the un-
derlying F . This in combination with (7.37) finishes our proof based
on weighted approximations of the del Barrio, Giné and Matrán (1999)
result (7.34). In the end they decided to stick to their original proof of
(7.34) based on Talagrand (1996), assuming F ∈ DN.
Remark In passing we record that a simple proof of (7.38) when r = 2
follows from a covariance formula of Nabeya (1951).

Nabeya’s (1951) Covariance Formula

Let Z1 and Z2 be two standard normal random variables with correla-
tion ρ. Then the covariance

0 ≤ Cov (|Z1|, |Z2|) =
2

π

[
ρ arcsin ρ+

√
1− ρ2 − 1

]
≤ |ρ|.

In particular this implies that

0 ≤ Cov (|B(s)| , |B(t)|) ≤ Cov (B(s), B(t))

and thus

E

(∫ 1−1/n

1/n

( {|B(t)| − E |B(t)|} dQ (t)

)2

=

∫ 1−1/n

1/n

∫ 1−1/n

1/n

Cov (|B(s)| , |B(t)|) dQ (s) dQ (t)

≤
∫ 1−1/n

1/n

∫ 1−1/n

1/n

Cov (B(s),B(t)) dQ (s) dQ (t) = σ2 (1/n) .

This obviously implies that

(7.39) sup
n≥2

E

∫ 1−1/n

1/n
{|B(t)| − E |B(t)|} dQ(t)

σ (1/n)

2

≤ 1.

Notice that absolutely no assumptions is required on the underlying
distribution function (quantile function) for (7.39) to hold .

Concluding observations

Piecing all of our inequalities together we can conclude that for suitable
constants A > 0 and C > 0, for all n ≥ 2 and t > 0,
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(7.40) P


∣∣∣∫ 1−1/n

1/n
{|αn(t)| − E |αn(t)|} dQ(t)

∣∣∣
σ (1/n)

> t

 ≤ A exp (−Ct) .

Notice once more that absolutely no assumptions are required on F for
(7.40) to hold.

For additional investigations along this line consult Haeusler and Mason
(2003), who study the asymptotic distribution of the appropriately
centered and normed moderately trimmed Wasserstein distance∫ Q(1−an/n)

Q(an/n)

|Fn(x)− F (x)| dx =d

∫ 1−an/n

an/n

|Gn(t)− t| dQ(t),

where an is a sequence of positive constants satisfying an → 0 and
nan →∞. See Haeusler and Mason (2003) for motivation. As part of a
general investigation of the trimmed pth Mallows distance, Munk and
Czado (1998) had previously looked at a somewhat different version
of the trimmed Wasserstein distance when 0 < an = α < 1/2. Check
their paper for details.



 
 



 
 

CHAPTER 8

The Quantile Process

M. Csörgő and Révész (1981) and M. Csörgő (1983) have shown the
notion of a quantile process to be very useful in the study of the asymp-
totic properties of statistical estimators and tests. In this chapter we
shall review some of the highlights of what is known about Gaussian
approximations (unweighted and weighted) to this process. We begin
with the definition of the uniform quantile process.

The Uniform Quantile Process

For each n ≥ 1, let U1,n ≤ · · · ≤ Un,n denote the order statistics of
U1, . . . , Un. Define the empirical quantile function on [0, 1]

Un(t) = Uk,n, (k − 1)/n < t ≤ k/n, for k = 1, . . . , n,

and Un(0) = U1,n, and the uniform quantile process

(8.1) βn(t) =
√
n{t− Un(t)}, for 0 ≤ t ≤ 1.

One easily checks that

Un(t) = G−1
n (t) = inf {x : Gn (x) ≥ t} , 0 < t < 1,

and
sup

0≤t≤1
|βn(t)| = sup

0≤t≤1
|αn(t)| .

The M. Csörgő and Révész (1979) Brownian Bridge Approx-
imation to βn

Theorem [MCsR] There exists a probability space (Ω, A, P ) with
independent Uniform (0, 1) random variables U1, U2, . . . , and a se-
quence of Brownian bridges B1, B2, . . . , such that for all n ≥ 1 and
−∞ < x <∞,

(8.2) P

{
sup

0≤t≤1
|βn(t)−Bn(t)| ≥ n−1/2(a log n+ x)

}
≤ b exp(−cx),

where a, b and c are suitable positive constants independent of n and
x.

Notice that on the probability space of Theorem [MCsR], (8.2) implies
that with probability 1,

57
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(8.3) sup
0≤t≤1

|βn(t)−Bn(t)| = O

(
log n√
n

)
.

The Brownian bridge that appears in (8.2) is not the same one in the
KMT approximation to αn. The approximation (8.2) is obtained by
noting that

βn(k/n) =
√
n{k/n− Uk,n} for k = 1, ..., n,

=d

√
n{k/n− Sk/Sn+1} for k = 1, ..., n,

where Sk =
∑k

i=1 ωi, for k = 1, ..., n + 1, and ω1, . . . , ωn+1 are i.i.d.
exponential random variables with mean 1 and applying the following
special case of the Komlós, Major, and Tusnády [KMT] (1975) Brow-
nian motion approximation to the partial sum process given in the
following result:

Theorem [KMT] Let ω be an exponential random variable with vari-
ance 1. Then on the same probability space there exist i.i.d. ω ran-
dom variables ω1, ω2, . . . , and i.i.d. standard normal random variables
Z1, Z2, . . . , such that for positive constants C, D and λ for all x ∈ IR
and n ≥ 1,

(8.4) P

{
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

ωi − k −
k∑
i=1

Zi

∣∣∣∣∣ > D log n+ x

}
≤ C exp (−λx) .

The General Quantile Process

For each n ≥ 1, let X1,n ≤ · · · ≤ Xn,n denote the order statistics of
X1, ..., Xn i.i.d. with common cdf F and with quantile function Q.
Define the empirical quantile function on [0, 1]

(8.5) Qn(t) = Xk,n, (k − 1)/n < t ≤ k/n, for k = 1, ..., n,

and Qn(0) = X1,n. It is readily checked that for t ∈ (0, 1)

Qn(t) = inf {x : Fn (x) ≥ t} ,
so that Qn(t) is the quantile or inverse function of the empirical distri-
bution function Fn. We define the general quantile process

(8.6) qn(t) =
√
n{Q (t)−Qn(t)}, for 0 < t < 1.

Notice that we avoid t = 0 and t = 1 since it could happen that
Q(0) = −∞ or Q(1) = ∞. Assume that F has a density function f ,
which is strictly positive on the set where 0 < F (x) < 1, plus some
other regularity conditions. M. Csörgő and Révész (1979, 1981) showed
that there exists a probability space (Ω, A, P ) with X1, X2, . . . , i.i.d.
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with common cdf F and a sequence of Brownian bridges B1, B2, . . . ,
such that, with probability 1,

(8.7) sup
0<t<1

|f (Q (t)) qn(t)−Bn(t)| = O

(
log n√
n

)
.

The proof is based on (8.3), using the mean value theorem, noting that
Q′ (t) = 1/f (Q (t)) , and applying the fact that

{qn(t), 0 < t < 1}n≥1 =d

{√
n{Q (t)−Q (Un(t))}, 0 < t < 1

}
n≥1

.

For more details see M. Csörgő and Révész (1979, 1981).

The Bahadur-Kiefer process The process

αn(t)− βn(t), 0 ≤ t ≤ 1,

is called the Bahadur-Kiefer process. Surprisingly one can show that,
with probability 1, for each 0 ≤ t ≤ 1,

lim sup
n→∞

n1/4 ± (αn(t)− βn(t))

(log log n)3/4
= 25/43−3/4 (t(1− t))1/4.

Refer to Kiefer (1967) and Arcones and Mason (1997). Moreover, one
has, with probability 1,

lim sup
n→∞

n1/4 sup0≤t≤1 |αn(t)− βn(t)|
√

log n 4
√

log log n
= 2−1/4

and

lim
n→∞

n1/4 sup0≤t≤1 |αn(t)− βn(t)|
√

log n
√

sup0≤t≤1 |αn(t)|
= 1.

See Kiefer (1970) and for more details, Deheuvels and Mason (1990).
This second statement implies that

lim
n→∞

n1/4 sup0≤t≤1 |αn(t)− βn(t)|
√

log n
→d

√
sup

0≤t≤1
|B(t)|.

For any n ≥ 2 and 0 ≤ ν < 1/4 set

Kn,ν = sup
1/n≤t≤1−1/n

nν |αn(t)− βn(t)|
(t(1− t))1/2−ν

and

Γn,ν = sup
1/n≤t≤1−1/n

nν |βn(t)−Bn(t)|
(t(1− t))1/2−ν .

Cs-Cs-H-M (1986) (see also Mason (1991)) proved that for any 0 ≤
ν < 1/4, Kn,ν = Op(1). This implies that on the probability space
of the Mason and van Zwet theorem one has Γn,ν = Op(1). On the
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Cs-Cs-H-M (1986) space Γn,ν = Op(1) for any 0 ≤ ν < 1/2, whereas
∆n,ν(1) = Op(1) for any 0 ≤ ν < 1/4. So the probability spaces of
Theorems 1 and 2 are, in a sense, the duals of each other. Cs-Cs-H-
M (1986) used ideas from M. Csörgő and Révész (1979) to prove the
following weighted approximation for the uniform quantile process:

Theorem Cs-Cs-H-M (1986). On a rich enough probability space
there exists a sequence of independent Uniform (0, 1) random vari-
ables U1, U2, . . . , and a sequence of Brownian bridges B1, B2, . . . , such
that for the uniform empirical processes βn based on the Ui’s and all
0 ≤ ν < 1

2

(8.8) sup
1/(n+1)≤t≤1−n/(n+1)

|βn(t)−Bn(t)|
(t(1− t))1/2−ν = Op(n

−ν).

They inferred the weighted approximation (5.1) for αn for 0 ≤ ν < 1
4

from the fact that for any such ν

sup
1/(n+1)≤t≤1−n/(n+1)

nν |βn(t)− αn(t)|
(t(1− t))1/2−ν = Op(1).

On the probability space of Theorem 3 the ranges ν are reversed.

More Exponential Inequalities

Mason (2001b) derived the following exponential inequalities for Kn,ν

and Γn,ν .

Theorem 4. For every 0 ≤ ν < 1/4 there exist positive constants bν
and cν such that for all n ≥ 2 and 0 ≤ x <∞,
(8.9) P {Kn,ν ≥ x} ≤ bν exp(−cνx)

and there exist positive constants Aν and dν such that for all n ≥ 2
and 0 ≤ x <∞,
(8.10) P {Γn,ν ≥ x} ≤ Aν exp(−dνx).

More about weighted approximations to the quantile process and their
applications can be found in M. Csörgő, M. and Horváth (1993).



 
 

CHAPTER 9

A Non-Hungarian Construction

The original proof of Theorem 1 given by Cs-Cs-H-M (1986) was based
on the KMT (1975, 1976) Wiener process strong approximation to the
partial sum process. Mason and van Zwet (1987) derived their version
through their refinement of the KMT (1975) Brownian bridge approx-
imation to the uniform empirical process stated in Theorem 2 above.
For this reason SW (1986) refer to these weighted approximations as
Hungarian constructions.

To establish this approximation in its full strength, i.e. (5.1) holds
for all 0 ≤ ν < 1

2
, the use of the KMT construction seems to be

unavoidable. For the overwhelming majority of situations, it suffices
for (5.1) to hold for e.g. 0 < ν < 1

4
. But for this range of ν’s such a

construction can be obtained by a much less involved tool, namely, the
Skorohod embedding scheme as shown by Mason (1991) and M. Csörgő
and Horváth (1986). It is based on the fact that one can use the
Skorohod (1965) embedding, cf. Breiman (1967), to show that there
exist on the same probability space a standard Wiener process W on
[0,∞) and a sequence of i.i.d. exponential random variables ω1, ω2, . . .
with mean 1 such that for all 2 < p < 4, with probability 1,

(9.1) m−1/p |Sm −m−W (m)| → 0, as m→∞,

where for any m ≥ 1, Sm = ω1 + · · ·+ ωm. More specifically, applying
Breiman (1967) to this situation we get that there exist a sequence of
i.i.d. positive random variables τ1, τ2, . . . , such that Eτ1 = V ar (ω1)
and a standard Wiener process W on [0,∞) such that as a sequence of
random variables,

{Sm −m}m≥1 =d

{
W

(
m∑
i=1

τi

)}
m≥1

and (9.1) holds. The following distributional representation of the uni-
form order statistics (previously stated in (2.7)) for each n ≥ 1,

(U1,n, . . . , Un,n) =d

(
S1

Sn+1

, . . . ,
Sn
Sn+1

)
,

61
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also comes into play.

Theorem S. On a rich enough probability space there exists a sequence
of independent Uniform (0, 1) random variables U1, U2, . . . , and a se-
quence of Brownian bridges B1, B2, . . . , such that for the uniform em-
pirical processes αn based on the Ui’s and all 0 < ν < 1

4

(9.2) sup
0≤s≤1

|αn(s)−Bn(s)|
(s(1− s))1/2−ν = Op(n

−ν).

Moreover, statement (9.2) remains true for ν = 0 when Bn is replaced
by Bn, where Bn is defined as in (5.2). Furthermore,

(9.3) sup
1/(n+1)≤s≤n/(n+1)

|βn(s)−Bn(s)|
(s(1− s))1/2−ν = Op(n

−ν).

Proof. As in Cs-Cs-H-M (1986) let
{
W (i) (s) : 0 ≤ s <∞

}
, i = 1, 2, be

two independent standard Wiener processes sitting on the same prob-
ability space. On this probability space construct using the Skorohod
embedding (9.1) two independent sequences of independent exponen-

tial random variables with expectation one, Y
(i)

1 , Y
(i)

2 , . . . , as a func-
tion of W (i), i = 1, 2. These sequences have the property that for each
i = 1, 2, and 2 < p < 4, cf. Breiman (1967),

(9.4) m−1/p
∣∣S(i)

m −m−W (i)(m)
∣∣→ 0, a.s. as m→∞,

where for i = 1, 2, and m ≥ 1

S(i)
m =

m∑
j=1

Y
(i)
j .

For each integer n ≥ 2, let

Yj (n) =

{
Y

(1)
j for j = 1, . . . , bn/2c

Y
(2)
n+2−j for j = bn/2c+ 1, . . . , n+ 1,

where bxc is the integer part of x, and set

Sm (n) =
m∑
j=1

Yj (n) for m = 1, . . . , n+ 1.

For notational convenience, we write from now on Yj and Sm for Yj (n)
and Sm (n). Also for each integer n ≥ 2, let Wn (s) = W (1) (s) for
0 ≤ s ≤ bn/2c, and Wn (s) = W (1) (bn/2c) + W (2) (n+ 1− bn/2c) −
W (2) (n+ 1− s) for bn/2c < s ≤ n+1. It is easily checked that for each
integer n ≥ 2, {Wn (s) : 0 ≤ s ≤ n+ 1} is a standard Wiener process
on [0, n+ 1].
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We will first show that for each 0 ≤ ν < 1
4
,

(9.5) Cn,1 = OP (1) ,

where Cn,1 =

max
1≤i≤n/2

∣∣∣∣n{ Si
Sn+1

− i

n

}
−
{
Wn (i)− i

n
Wn (i)

}∣∣∣∣ i−1/2+ν ,

and

(9.6) Cn,2 = OP (1) ,

where Cn,2 =

max
n/2+1≤i≤n

∣∣∣∣n{ Si
Sn+1

− i

n

}
−
{
Wn (i)− i

n
Wn (i)

}∣∣∣∣ (n+ 1− i)−1/2+ν .

First consider (9.5). Notice that by the law of large numbers

max
1≤i≤n/2

n

∣∣∣∣ SiSn+1

− Si
Sn

∣∣∣∣ i−1/2+ν

= max
1≤i≤n/2

ni−1/2+ν SiYn+1

SnSn+1

= OP

(
n−1/2+ν

)
= oP (1) .

Also by the law of large numbers, the law of the iterated logarithm and
the central limit theorem

max
1≤i≤n/2

∣∣∣∣ nSn
{
Si − i−

i

n
(Sn − n)

}
−
{
Si − i−

i

n
(Sn − n)

}∣∣∣∣ i−1/2+ν

≤
{

max
1≤i≤n/2

|Si − i| i−1/2+ν + n−1/2+ν |Sn − n|
}
|Sn − n|
Sn

=
{
OP

(
(log log n)1/2 nν

)
+OP (nν)

}
OP

(
n−1/2

)
= oP (1) .

Thus in light of the above two oP (1) statements and a little algebra,
to prove (9.5) it is enough to show that

(9.7) Dn = OP (1) ,

where Dn =

max
1≤i≤n/2

∣∣∣∣Si − i− i

n
(Sn − n)−

{
Wn (i)− i

n
Wn (n)

}∣∣∣∣ i−1/2+ν .
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Observe that

Dn ≤ max
1≤i≤n/2

∣∣∣S(1)
i − i−W (1)

n (i)
∣∣∣ i−1/2+ν

+n−1/2+ν

∣∣∣∣S(1)

bn2 c
−
⌊n

2

⌋
−W (1)

n

(⌊n
2

⌋)∣∣∣∣
+n−1/2+ν

∣∣∣∣S(2)

n+1−bn2 c
−
(
n+ 1−

⌊n
2

⌋)
−W (2)

n

(
n+ 1−

⌊n
2

⌋)∣∣∣∣
+n−1/2+ν

∣∣∣Y (2)
1 − 1

∣∣∣+ n−1/2+ν |Wn (n+ 1)−Wn (n)| .

Since 1/2 − ν > 0, we see by (9.4) that the first term on the right
side of this inequality is OP (1) and the next two terms are oP (1).
The last two terms are obviously oP (1) random variables. Hence we
have established (9.7) and therefore (9.5). Assertion (9.6) is proved
in almost the same way using the symmetry of the construction given
above.

Next set for each integer n ≥ 2

Ũi,n = Si/Sn+1 for i = 1, . . . , n,

and

B̃n (s) = n−1/2 (sWn (n)−Wn (sn)) for 0 ≤ s ≤ 1.

We see that for each integer n ≥ 2(
Ũ1,n, . . . , Ũn,n

)
=d (U1,n, . . . , Un,n) ,

and B̃n is a Brownian bridge. Let β̃n denote the uniform quantile

process based on Ũ1,n, . . . , Ũn,n. We claim that

(9.8) E1,n := sup
1/(n+1)≤s≤bn/2c/2

nν |β̃n(s)− B̃n(s)|
s1/2−ν = Op(1)

and

(9.9) E2,n := sup
bn/2c/2<s≤n/(n+1)

nν |β̃n(s)− B̃n(s)|
(1− s)1/2−ν = Op(1).
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Notice that

E1,n ≤ 2 max
1≤i≤n/2

nν |β̃n(i/n)− B̃n(i/n)|
(i/n)1/2−ν

+ max
1≤i≤bn/2c−1

sup
i/n≤s≤(i+1)/n

nν |B̃n( i+1
n

)− B̃n(s)|
(i/n)1/2−ν

+ sup
1/(n+1)≤s≤1/n

nν |B̃n( 1
n
)− B̃n(s)|

(1/ (n+ 1))1/2−ν + 1.(9.10)

The first term on the right side of (9.10), we recognize to be 2Cn,1,
which has just been proved to be Op(1). To show that the next two
terms on the right side of (9.10) are Op(1), we require the following
probability inequality: for any 0 < a < 1, h > 0 and 0 < u <∞
(9.11)

P

{
sup

s∈[a−h,a+h]∩[0,1]

|B(a)−B(s)| ≥ u
√
h

}
≤ Au−1 exp

(
−u2/8

)
,

where B denotes a Brownian bridge and A is a suitably chosen universal
constant, cf. (1.11) of Cs-Cs-H-M (1986).

Using (9.11) it is routine to verify that for all ε > 0 there exists a
0 < M <∞ such that for all integers n ≥ 2

bn/2c−1∑
i=1

P

{
sup

i/n≤s≤(i+1)/n

B̃n(
i+ 1

n
)− B̃n(s)| ≥ M√

n
i1/2−ν

}
< ε,

which proves that the second term on the right side of (9.10) is Op(1).
The fact that the third term on the right of (9.10) is op(1) follows easily
from (9.11). Thus we have established (9.8). Assertion (9.9) is proved
similarly using (9.6) and (9.11).

Combining (9.8) and (9.9), we get that

(9.12) sup
1/(n+1)≤s≤n/(n+1)

nν |β̃n(s)− B̃n(s)|
(s(1− s))1/2−ν = Op(1).

Up to this stage in the proof, we have constructed a probability space

on which sit a sequence β̃n of versions of βn, i.e. for each integer n ≥ 2{
β̃n (s) : 0 ≤ s ≤ 1

}
=d {βn (s) : 0 ≤ s ≤ 1} ,

and a sequence of Brownian bridges B̃n such that (9.12) holds for all 0 ≤
ν < 1/4. In order to construct a probability space with a sequence of
Uniform (0, 1) random variables U1, U2, . . . , and a sequence of Brownian
bridges B1, B2, . . . , such that (9.3) holds, we now follow the procedure
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given in Lemma 3.1.1 of M. Csörgő (1983). This finishes the proof of
the (9.3) part of Theorem S, (9.2).

We now turn to the proof of the (9.2) part of Theorem S. First note that
an easy application of the Birnbaum-Marshall inequality (see (2.18) and
(2.19)) that for all 0 < ν < 1/4,

sup
0<s≤1/n

|αn(s)| /s1/2−ν + sup
0<s≤1/n

|αn(1− s)| / (1− s)1/2−ν = OP (1)

and

sup
0<s≤1/n

|Bn(s)| /s1/2−ν + sup
0<s≤1/n

|Bn(1− s)| / (1− s)1/2−ν = OP (1) .

This combined with the following proposition completes the proof of
(9.2) as well as Theorem S. �

Proposition S For any 0 < d < n/2, n ≥ 2 and 0 ≤ ν < 1
4

(9.13) sup
d/n≤s≤1−d/n

nν |αn(s)− βn(s)|
(s(1− s))1/2−ν = Op(1).

Proof. Since trivially

(9.14) sup
0≤s≤1

nν |αn(Un (s))− βn(s)|
(s(1− s))1/2−ν = O(n−1/2), a.s.,

to prove (9.14) it suffices to show that both

(9.15) sup
d/n≤s≤1

nν |αn(Un (s))− αn(s)|
s1/2−ν := Mn,1 (d) = Op(1)

and

(9.16) sup
0≤s≤1−d/n

nν |αn(Un (s))− αn(s)|
(1− s)1/2−ν := Mn,2 (d) = Op(1).

Also on account of Mn,1 (d) =d Mn,2 (d) it is enough to prove (9.15).
Assertion (9.15) will be an easy consequence of the following lemmas.

Lemma i For any 0 < d < 1 and 0 ≤ 2δ < 1
2

(9.17) sup
d/n≤s≤1

n2δ|Un (s)− s|
s1/2−2δ

= Op(1).

Proof. In Mason (1983), (also see Remark 4.4 of Marcus and Zinn
(1984), it is proved that for any 0 ≤ 2δ < 1

2

sup
0≤s≤1

n2δ|Gn (s)− s|
s1/2−2δ

= Op(1).
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In addition, from Lemma 2 of Wellner (1978) one has for any 0 < d < 1

sup
d/n≤s≤1

Un (s) /s = OP (1) .

These two facts when combined with (9.14) yield (9.17). �

For any 0 < a ≤ 1
2
, 0 ≤ b < c ≤ 1 and integer n ≥ 1 set ωn (a, b, c) =

sup {|αn(s+ h)− αn(s)| : 0 ≤ s+ h ≤ 1, 0 ≤ |h| ≤ a, b ≤ s ≤ c} .
Lemma ii For universal positive constants A and B for all 0 < a ≤ 1

2
,

0 ≤ b < c ≤ 1, n ≥ 1 and λ > 0

P
{
ωn (a, b, c) > λ

√
a
}

≤
{(

c− b
a

)
∨ 1

}
A exp

(
−Bλ2ψ

(
λ√
na

))
,(9.18)

where for all x ≥ 0

ψ (x) = 2x−2 {(x+ 1) log(x+ 1)− x} .
Proof. The proof is essentially contained in that of Inequality 1 in

Mason, Shorack and Wellner (1983). Also see Inequality 1 of J. Einmahl
and Mason (1988) (the ba−1 there should be replaced by (ba−1)∨ 1). �

For future reference we record the fact that for x ≥ 0

(9.19) ψ (x)↘ as x↗ .

Choose 0 ≤ ν < δ < 1
4

and set ρ = δ − ν. Also for any γ > 0, m ≥ 1
and 1 ≤ i ≤ n2m, let

∆n (i) = ωn

(
γi1−2δ

n
,
i

n2m
,
i+ 1

n2m

)
.

Lemma iii For any ε > 0, m ≥ 1 and 0 ≤ ν < δ < 1
4
, there exists a

γ > 0 such that for all n large enough

(9.20) P

(
max

1≤i<n2m
nν∆n (i) / (i/n)1/2−ν > γ

)
< ε.

Proof. For all large enough n inequality (9.18) is applicable to give
uniformly in 1 ≤ i < n2m, after a little algebra

P
{

∆n (i) > γn−1/2i1/2−ν
}

≤
{(

2m

γ

)
∨ 1

}
A exp

(
−Bi2ργψ

(
i2δ−ν−1/2

n

))
,

which by 2δ − ν − 1/2 < 0 and (9.19) is

≤
{(

2m

γ

)
∨ 1

}
A exp

(
−Bi2ργψ (1)

)
:= Pi (γ) .
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Since ρ > 0, for every ε > 0 we can choose a γ > 0 such that∑∞
i=1 Pi (γ) < ε. �

Returning to the proof of (9.15), by Lemma i for any m ≥ 1 and ε > 0
there exists a γ > 0 such that for all n ≥ 1

P

{
sup

1/(n2m)≤s≤1

n2δ|Un (s)− s|
s1−2δ

≤ 2m(1−2δ)γ

2

}
> 1− ε.

Hence with probability greater than 1− ε

Mn,1

(
2−m, ν

)
≤ max

1≤i<n2m
M̃n (i, δ, ν) ,

where M̃n (i, δ, ν) =

sup

{
nν
|αn (s+ h)− αn (s)|

s1/2−ν : 0 ≤ s+ h ≤ 1, 0 ≤ |h| ≤ γ (i+ 1)1−2δ

2n
,

i

n2m
≤ s ≤ i+ 1

n2m

}
,

which since
(
i+1
i

)1−2δ
/2 < 1, is obviously

≤ 2m(1/2−ν) max
1≤i<n2m

nν∆n (i) / (i/n)1/2−ν .

A straightforward argument based on Lemma iii now verifies that
Mn,1 (2−m, ν) = OP (1). �

Remark In Mason (1999) the proof of Proposition S is refined to give
the exponential inequality for Kn,ν stated in Theorem 4 above.

Remark The construction just given is nearly the same as that in
Cs-Cs-H-M (1986) with an important difference. Instead of using the
Skorohod embedding, they used the KMT (1975,1976) approximation.
This says that one can construct two independent standard Wiener
processes

{
W (i) (s) : 0 ≤ s <∞

}
, i = 1, 2, and two independent se-

quences of independent exponential random variables with expectation

one, Y
(i)

1 , Y
(i)

2 , . . . , i = 1, 2, sitting on the same probability space such
that for universal constants C, K and λ and all x ≥ 0

P

{
max

1≤m≤n
|S(i)
m −W (i) (m) | ≥ n−1/2(C log x+ x)

}
≤ K exp(−λx),

where as above for i = 1, 2, andm ≥ 1, S
(i)
m =

∑m
j=1 Y

(i)
j . They obtained

the following.

Theorem Cs-Cs-H-M Inequalities (1986) There exists a probability
space (Ω, A, P ) with independent Uniform (0, 1) random variables U1,
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U2, . . . , and a sequence of Brownian bridges B1, B2, . . . , such that for
all n ≥ 1, 1 ≤ d ≤ n, and 0 ≤ x <∞,

P

{
sup

0≤t≤d/n
|βn(t)−Bn(t)| ≥ n−1/2(a log d+ x)

}
≤ b exp(−cx)

and

P

{
sup

1−d/n≤t≤1

|βn(t)−Bn(t)| ≥ n−1/2(a log d+ x)

}
≤ b exp(−cx),

where a, b and c are suitable positive constants independent of n, d and
x.

The original version of these inequalities restricted 0 ≤ x ≤
√
d. In

M. Csörgő and Horváth (1993) this restriction was lifted. From these
inequalities they proved that the weighted approximation (8.8) holds
on the probability space of Theorem Cs-Cs-H-H Inequalities (1986).



 
 



 
 

CHAPTER 10

Some Further Progress on Weighted
Approximations

Given the construction given in the previous chapter it naturally comes
to mind that the martingale version of the Skorohod embedding might
also be used to prove weighted approximation results for more general
processes than αn as long as they possess a certain martingale structure.

10.1. Exchangeable Processes

Shorack (1991) was the first to use the Skorohod embedding for martin-
gales in this way. He used it to establish a weighted approximation to
the finite sampling process and a weighted uniform empirical process.

Motivated by discussions with Shorack during a visit to the University
of Washington in the summer of 1990, Uwe Einmahl and I, when not
hiking in the North Cascades, found time to generalize Shorack’s results
to exchangeable processes, i.e. to processes of the form

(10.1) εn(t) = n−1/2
∑
i≤nt

Yn(i), 0 ≤ t ≤ 1,

where for every n ≥ 1 the random variables Yn(1), . . . , Yn(n) are ex-
changeable.

Assume that

(i)
∑n

i=1 Yn(i) = 0,

(ii) 1
n

∑n
i=1 Y

2
n (i)→P σ

2 for some σ2 > 0, and

(iii) max1≤i≤n Y
2
n (i)/n→P 0.

Then by Theorem 24.3 of Billingsley (1968) one concludes that εn con-
verges weakly to σB, where B is a Brownian bridge. Under additional
regularity conditions, U. Einmahl and Mason (1992) were able to ob-
tain the following weighted approximation to εn.

Theorem 5. Assume (i) and replace (ii) by

(iv) 1
n

∑n
i=1 Y

2
n (i) = σ2 +OP

(
n−1/2

)
,

and (iii) by

71
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(v) EY 4
n (1) ≤ K <∞ for some K > 0 and all n ≥ 1.

Then on a suitable probability space there exist a sequence of probabilis-
tically equivalent versions ε̃n of εn and a sequence of Brownian bridges
B1, B2, . . . , such that for all 0 ≤ ν < 1/4 and τ > 0

(10.2) sup
τ/n≤t≤1−τ/n

nν |ε̃n(t)− σBn(t)|
(t(1− t))1/2−ν = OP (1) .

U. Einmahl and Mason (1992) point out that condition (v) can be
weakened to
(10.3)

E |Yn|γ (1) ≤ K <∞ for some γ > 2 and K > 0 and all n ≥ 1,

with a corresponding restriction on ν in the conclusion (10.2). Kirch
(2003) has carried out the needed analysis to verify this. (Also see
Theorem D.1 in the Appendix of Kirch (2006).) Her calculations show
that when (v) is replaced by (10.3) and (iv) by

1

n

n∑
i=1

Y 2
n (i) = σ2 +OP

(
n−2s

)
,

where s = min
(
γ−2
2γ
, 1

4

)
, then (10.2) is valid for all 0 ≤ ν < s. This re-

sult could also be derived with some difficulty from the general weighted
approximation to continuous time martingales given in Theorem 1 of
Haeusler and Mason (1999).

U. Einmahl and Mason (1992) obtained the approximation (5.1) stated
in Theorem 1 and those in Shorack (1991) as special cases of their
approximation, as well as weighted approximations for a number of
other interesting examples. Recently Kirch and Steinebach (2006) and
Kirch (2006, 2007, 2008) have used the U. Einmahl and Mason (1992)
weighted approximation to derive the limiting distribution of certain
permutation tests for a change point.

Some Special Cases

1. Set

Yn (i) = n

{
Gn

(
i

n

)
−Gn

(
i− 1

n

)}
− 1, i = 1, . . . , n.

This choice yields a version of the weighted approximation (5.1) to the
uniform empirical process given in Theorem 1.

2. Set

Yn (i) = 1− nξi
ξ1 + · · ·+ ξn

, i = 1, . . . , n,
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where ξ1, ξ2, . . . are i.i.d. exponential random variables with mean 1.
This choice yields a weighted approximation to the uniform quantile
process βn as defined in (8.1).

3. Let cn(1), . . . , cn(n), n ≥ 1, be a triangular array of constants satis-
fying

n∑
i=1

cn(i) = 0,
n∑
i=1

c2
n(i)/n = 1 and

n∑
i=1

c4
n(i)/n = O(1).

Consider the finite sampling processes

Πn(t) =
∑
i≤tn

cn(Ai), 0 ≤ t ≤ 1,

where (A1, . . . , An) is a random permutation of (1, . . . , n) taken with
probability 1/n!. We get that for 0 ≤ ν < 1

4
and d > 0

sup
d/n≤t≤1−d/n

|Π̃n(t)− B̃n(t)|
(t(1− t))1/2−ν = Op(n

−ν).

The same result holds for the so-called weighted empirical process of
Koul (1970):

αc,n(t) =
n∑
i=1

cn(i)1{Ui ≤ t}, 0 ≤ t ≤ 1.

Shorack (1991) first proved these results by means of the Skorohod
embedding for martingales. This was also the basic tool that U. Ein-
mahl and Mason (1992) used to obtain their general approximation to
exchangeable processes. Replacing the cn(i), by random exchangeable
weights Wi,n−1/n, one readily derives weighted approximations to the
weighted bootstrap empirical process of Mason and Newton (1992). See
the discussion of the weighted approximation to the general weighted
bootstrapped empirical process below.

10.2. Nonparametric Bootstrapped Empirical Process

From results in S. Csörgő and Mason (1989) one can derive the following
weighted approximation to the nonparametric bootstrapped empirical
process:

On the same probability space there exist a sequence of i.i.d. F random
variables X1, X2, . . . , a triangular array

{(M1,n, . . . ,Mn,n) : n ≥ 1}
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of Multinomial
(
n; 1

n
, . . . , 1

n

)
random vectors and a sequence of Brown-

ian bridges {Bn}n≥1 , where the (M1,n. . . . ,Mn,n) , n ≥ 1, andB1, B2, . . . ,
are independent of X1, X2, . . . , such that for all 0 ≤ ν < 1/4 and τ > 0

sup
τ/n≤F (x)≤1−τ/n

|αM,n(x)−Bn(F (x))|
(F (x) (1− F (x)))1/2−ν = Op(n

−ν),

where

αM,n(x) =
√
n {FM,n(x)− Fn (x)} ,

Fn (x) = n−1

n∑
i=1

1{Xi ≤ x}, −∞ < x <∞,

and

FM,n (x) = n−1

n∑
i=1

Mi,n1{Xi ≤ x}, −∞ < x <∞.

Such a weighted approximation to the bootstrapped empirical process
has proved useful in establishing the weak consistency of nonparametric
bootstrapped functions of the empirical process. See S. Csörgő and
Mason (1989) for details and many examples.

10.3. Weighted Bootstrapped Empirical Process

The results of U. Einmahl and Mason (1992) described above yield
the following weighted approximation to the general weighted boot-
strapped empirical process introduced by Mason and Newton (1992).
It includes as a special case the S. Csörgő and Mason (1989) result just
cited:

Assume that {(W1,n, . . . ,Wn,n) : n ≥ 1} is a triangular array of ex-
changeable random variables satisfying

n∑
i=1

Wi,n = 1,Wi,n ≥ 0, E (nW1,n − 1)4 = O(1),

1

n

n∑
i=1

(nWi,n − 1)2 = σ2 +OP

(
n−1/2

)
, for some σ2 > 0,

and

lim
ε↘0

lim inf
n→∞

P {nW1,n > ε} = 1.

Then on the same probability space there exist a sequence of i.i.d. F
random variables X1, X2, . . . , a triangular array

{(W1,n. . . . ,Wn,n) : n ≥ 1}
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as above and a sequence of Brownian bridges {Bn}n≥1 , where the

(W1,n, . . . ,Wn,n) , n ≥ 1,

and B1, B2, . . . , are independent of X1, X2, . . . , such that for all 0 ≤
ν < 1/4 and τ > 0

sup
τ/n≤F (x)≤1−τ/n

|αW,n(x)− σBn(F (x))|
(F (x) (1− F (x)))1/2−ν = Op(n

−ν),

where

αW,n(x) =
√
n {FW,n(x)− Fn (x)} , −∞ < x <∞,

with

Fn (x) = n−1

n∑
i=1

1{Xi ≤ x}, −∞ < x <∞,

and

FW,n (x) =
n∑
i=1

Wi,n1{Xi ≤ x}, −∞ < x <∞.

10.4. Approximation to Continuous Time Martingales

We shall describe some research of Haeusler and Mason (1999),
which in many ways generalizes the results in the previous subsections.
Erich Haeusler and I accomplished this work during a very busy period
crammed with trips to Civil War battlefields and hikes in the Pennsyl-
vania mountains, while he was visiting me at the University of Delaware
in the winter of 1996. Our paper would have appeared earlier if the
editor had not misplaced it on his desk for a year.

Some Technicalities

Fix any 0 < t̄ ≤ ∞. Let

{Mn}n≥1 = {(Mn(t))0≤t<t̄}n≥1

be a sequence of mean zero martingales with respect to filtrations Fn =
(Fn(t))0≤t<t̄, and satisfying Mn(0) = 0.

Assume EM2
n(t) < ∞ for all n ≥ 1 and 0 ≤ t < t̄. Also assume

among other conditions, which are too technical to state here, that the
predictable quadratic variation < Mn > of Mn converges in a certain
way (see Haeusler and Mason (1999) for details) to a function

D : [0, t̄)→ [0,∞)

which is continuous, non-decreasing and satisfies

D(0) = 0, lim
t↑t̄

D(t) =∞.
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Under the above assumptions, Haeusler and Mason (1999) obtained
the following:

Theorem 6. On a rich enough probability space there exists a sequence
of versions

(M̃n)n≥1 of (Mn)n≥1 i.e. M̃n =d Mn for each n,

and a standard Wiener process W such that for all 0 < ν < β,

sup
t: 1
n−1
≤D(t)≤n−1

|M̃n(t)−W (D(t))|
D(t)1/2−ν(1 +D(t))2ν

= Op(n
−ν).

The constant β > 0 depends on a number of technical assumptions.

This result yields the U. Einmahl and Mason (1992) theorem as a
special case. In a related paper, Haeusler, Mason and Turova (2000)
used these ideas to construct a weighted approximation to a serial rank
process.

The Empirical Process seen as a Martingale

Set for n ≥ 1,

Mn(t) =
αn(t)

1− t
=

√
n(Gn(t)− t)

1− t
, 0 ≤ t < 1.

As we have already pointed out,

Mn = (Mn(t))0≤t<1

is a sequence of mean zero martingales with respect to the filtrations

Fn = (Fn(t))0≤t<1,

where for each 0 ≤ t < 1,

Fn(t) = σ(Gn(s), 0 ≤ s ≤ t).

In this case it turns out that

〈Mn〉(t) =
1

n

n∑
i=1

Di(t), 0 ≤ t < 1,

where for each i ≥ 1 and 0 ≤ t < 1,

Di(t) :=

∫ t

0

1{Ui ≥ s}
(1− s)3

ds and D(t) =
t

1− t
, for 0 ≤ t < 1.

Applying Theorem 6 to this setup eventually yields a version of the
weighted approximation (5.1) to the uniform empirical process as stated
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in Theorem 1. In fact, Haeusler and Mason (1999) obtain this approxi-
mation via a special case of a weighted approximation to the ‘randomly’
weighted empirical process

(10.4) Xn(t) :=
n∑
i=1

wi,n(1{Ui ≤ t} − t), 0 ≤ t ≤ 1,

where the weights w1,n, 1 ≤ i ≤ n, are independent of U1, U2, . . . A
special case of their general Theorem 6 yields the following weighted
approximation for (10.4).

Theorem 7. Assume that the weights wi,n, 1 ≤ i ≤ n, satisfy the
following two conditions:

n∑
i=1

Ew4
i,n = O(n−1) and

n∑
i=1

w2
i,n − 1 = OP (n−1/2).

Then on a rich enough probability space there exists a sequence of prob-

abilistically equivalent versions (X̃n)n≥1 of (Xn)n≥1 (i.e. X̃ n =d Xn

for every n) and a standard Brownian bridge B such that for all
0 ≤ ν < 1/4

(10.5) sup
1/n≤t≤1−1/n

|X̃n(t)−B(t)|
(t(1− t))1/2−ν = Op(n

−ν),

and moreover (10.5) remains true when the supremum is taken over
the entire interval (0, 1) in the case 0 < ν < 1/4.

Shorack (1991) and U. Einmahl and Mason (1992) established special
cases of this result under the additional but unnecessary assumption
that

∑n
i=1wi,n = 0. Clearly Theorem 7 also gives as a special case

a version of the approximation result (5.1) stated in Theorem 1 by
choosing wi,n = 1/

√
n for i = 1, . . . , n.

10.4.1. Application to Eicker-Jaeschke and Rényi-type sta-
tistics. Weighted approximations are especially useful to establish as-
ymptotic distributional results when usual weak convergence techniques
fail or are extremely cumbersome to apply. For example, consider the
following statistics. Let X1, X2, ..., be a sequence of independent ran-
dom variables with a common continuous cdf F . For each n ≥ 1 define
as before the empirical distribution function based upon X1, ..., Xn to
be

Fn(x) :=
1

n

n∑
i=1

1{Xi ≤ x}, −∞ < x <∞.
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Introduce the Eicker-Jaeschke statistic

En = sup
−∞<x<∞

√
n|Fn(x)− F (x)|√
F (x)(1− F (x))

,

and the Rényi statistic

Rn(r) = sup
{x: r≤F (x)<∞}

√
n|Fn(x)− F (x)|

F (x)
,

where 0 < r < 1. These two statistics, along with their versions formed
by replacing in the denominator F by Fn, have been shown by Révész
(1982), Mason and Schuenemeyer (1983) and Calitz (1987) to be more
sensitive to various types of heavy and light tail alternatives than the
usual Kolmogorov-Smirnov statistic.

Eicker (1979) and Jaeschke (1979) proved, among other results, that
for all −∞ < x <∞
(10.6) P{anEn − bn ≤ x} → E2(x), as n→∞,
where for n ≥ 3

an =
√

2 log log n, bn = 2 log log n+ 2−1 log log log n− 2−1 log π

and E(x) = exp(− exp(−x)). Eicker proved (10.6) using methods from
classical probability, whereas Jaeschke based his proof upon the pow-
erful KMT (1975) Brownian bridge approximation to the empirical
process. Later, Cs-Cs-H-M (1986) provided a proof of (10.6) based
upon their weighted approximation to the uniform empirical process
given in Theorem 1, which is a special case of Theorem 7.

Cs-Cs-H-M (1986) also used Theorem 1 to prove the following result
for the Rényi statistic: Let rn be any sequence of positive constants
such that for some 0 < β < 1, we have 0 < rn ≤ β for all large enough
n, and nrn →∞. Then for all x ≥ 0, as n→∞,

(10.7) P

{√
rn

1− rn
Rn(rn) ≤ x

}
→ P

{
sup

0≤t≤1
|W (t)| ≤ x

}
.

The special case when rn = β was first proved by Rényi (1953) and the
case when rn → 0 and nrn →∞ by Csáki (1974).

The Cs-Cs-H-M (1986) result (10.7) can be obtained, though much less
efficiently, using weak convergence results for the local empirical pro-
cess established by U. Einmahl and Mason (1997). So far no approach
to the Eicker-Jaeschke limiting distribution theorem (10.6) based en-
tirely upon weak conference results for empirical processes seems to be
known.
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Consider now the following generalized versions of the statistics En and
Rn(r), respectively, given by

En,w = sup
−∞<x<∞

|
∑n

i=1wi,n(1{Xi ≤ x} − F (x))|√
F (x)(1− F (x))

and

Rn,w(r) = sup
{x: r≤F (x)<∞}

|
∑n

i=1wi,n(1{Xi ≤ x} − F (x))|
F (x)

.

Assuming that the weights wi,n, 1 ≤ i ≤ n, satisfy the conditions of
Theorem 7, and noting that (F (X1), ..., F (Xn)) is equal in distribution
to (U1, ..., Un), when F is continuous, we can apply the weighted ap-
proximation by Theorem 7, in exactly the same way as Theorem 1 was
used in the proofs of Theorems 4.4.1 and 4.5.1 of Cs-Cs-H-M (1986) to
show that both (10.6) and (10.7) remain true when En and Rn are re-
placed by En,w and Rn,w(rn), respectively. For the proof for the Rényi
statistic based on Theorem 1 see Example 2 in Chapter 5.

Closely related to the statistics En,w and Rn,w(r) are the Kolmogorov-
Smirnov and Rényi-type statistics proposed by Hájek and Šidák (1967)
for regression-type alternatives which are functions of the random sums

k∑
i=1

cDi,n, 1 ≤ k ≤ n,

where (c1,n, ..., cn,n) is a vector of regression constants and (D1, ..., Dn)
is an anti-rank vector uniformly distributed over the permutations of
(1, ..., n). Consider the following Eicker-Jaeschke version of the Hájek
and Šidák (1967) Kolmogorov-Smirnov statistic

Ên,C = max
1≤k≤n

|
∑k

i=1 cDi,n − kcn|√∑n
i=1(ci,n − cn)2

√
k
n
(n+1−k

n
)
,

where cn =
∑n

i=1 ci,n/n, and, further, the Hájek and Šidák (1967)
Rényi-type statistic defined with 0 < r < 1 to be

R̂n,C(r) = max
rn≤k≤n

n|
∑k

i=1 cDi,n − kcn|
k
√∑n

i=1(ci,n − cn)2
.

By applying the weighted approximation result of Shorack (1991) for
the finite sampling process or that of U. Einmahl and Mason (1992)
for the exchangeable process (10.1) to the anti-rank process

An(t) :=

∑
i≤tn cDi,n − [tn]cn√∑n

i=1(ci,n − cn)2
, 0 ≤ t ≤ 1,



 
 

80 10. SOME FURTHER PROGRESS ON WEIGHTED APPROXIMATIONS

(both of which follow from our Theorem 6), we obtain under the as-
sumptions on the weights

wi,n :=
ci,n − cn√∑n
i=1(ci,n − cn)2

, 1 ≤ i ≤ n,

given in Theorem 7 that both (10.6) and (10.7) hold, as before, with

En and Rn replaced by Ên,C and R̂n,C(rn), respectively. (Hájek and

Šidák (1967) obtained (10.7) for R̂n,C(rn) in the case when rn = r,
using weak convergence. Their method fails in the case when rn → 0
and nrn →∞.)
It is difficult to conceive how one would prove all of the limiting dis-
tributional results presented in this subsection for the general Eicker-
Jaeschke and the Rényi-type statistics introduced here without these
weighted approximations. This should convince the reader of the power
of the weighted approximation methodology. (This subsection was
taken almost verbatum from Haeusler and Mason (1999).)

10.5. Some Final Remarks About Probability Spaces

With respect to weighted approximations to the uniform empirical
and quantile processes, there are at least four probability spaces on
which they hold for suitable values of ν. First of all on any probability
space on which sits a sequence of i.i.d. Uniform (0, 1) random variables
U1, U2, . . . . , it was shown in M. Csörgő, S. Csörgő, Horváth and Mason
(1986) and Mason (1991) that one always has for any 0 ≤ ν < 1/4,

(10.8) sup
1/(n+1)≤s≤n/(n+1)

nν |αn (t)− βn (t)|
(t(1− t))1/2−ν = OP (1) .

However there are at least four methods to enlarge the space to include
a sequence of Brownian bridges {Bn}n≥1 such that for suitable ν1 ≥ 0,

(10.9) sup
0≤t≤1

nν1
∣∣αn (t)−Bn (t)

∣∣
(t(1− t))1/2−ν1

= OP (1) ,

and for suitable ν2 ≥ 0,where Bn is defined as in (5.2),

(10.10) sup
1/(n+1)≤s≤n/(n+1)

nν2 |βn (t)−Bn (t)|
(t(1− t))1/2−ν2

= OP (1) .

Method 1. M. Csörgő, S. Csörgő, Horváth and Mason (1986) used the
KMT (1975, 1976) strong approximation to the partial sum process to
construct a probability space so that (10.10) is valid for all 0 ≤ ν2 < 1/2
and then inferred that (10.9) holds on this space for all 0 ≤ ν1 < 1/4
via (10.8). In the process they proved that on their probability space
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the analogs to the inequalities in Theorem 2 held with αn replaced by
βn.

Method 2. Mason and van Zwet (1987) showed that on the proba-
bility space on which the KMT (1975) Brownian bridge approximation
to uniform empirical process (4.3) holds that (10.9) is valid for all
0 ≤ ν1 < 1/2 and then inferred that (10.10) holds on this space for all
0 ≤ ν2 < 1/4 via (10.8).

Method 3. M. Csörgő and Horváth (1986) and Mason (1986, 1991)
used the Skorohod embedding to the partial sum process to construct
a probability space so that (10.10) is valid for all 0 ≤ ν2 < 1/4 and
then inferred that (10.9) holds on this space for all 0 ≤ ν1 < 1/4 via
(10.8).

Method 4. U. Einmahl and Mason (1992) and Haeusler and Mason
(1999) constructed a probability space using the Skorohod embedding
for martingales so that (10.9) is valid for all 0 ≤ ν1 < 1/4 and then
inferred that (10.10) holds on this space for all 0 ≤ ν2 < 1/4 via (10.8).



 
 



 
 

APPENDIX A

Basic Large Sample Theory Facts

A good reference for the material in this appendix, along with much
more, is Chapter 1 of Serfling (1980).

A σ–field of events Let Ω be a non-empty sample space of outcomes.
A set A of subsets of Ω is called a σ–field if

(a) Ω ∈ A.
(b) If A ∈ A then AC ∈ A.
(c) If A1, A2, . . . ,∈ A then ∪∞i=1Ai ∈ A.
The pair (Ω,A) is called a measurable space.

Probability Given a sample space Ω with a σ–field of events A, a
probability P is a function defined on A, which satisfies the following
properties:

(a) P (A) ≥ 0 for all A ∈ A.
(b) P (Ω) = 1.

(c) If A1, A2, . . . ,∈ A are pairwise disjoint then

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai) .

The triple (Ω,A, P ) is called a probability space.

A real valued random variable A real valued random variable X
on a probability space (Ω,A, P ) is a measurable function from Ω to
R, meaning that for each ω ∈ Ω, X (ω) ∈ R and for each x ∈ R,
{ω : X (ω) ≤ x} ∈ A.
Convergence in probability A sequence of random variables Xn

converges in probability to a random variable X if for all ε > 0

P (|Xn −X| > ε)→ 0 as n→∞.
This is usually written as

Xn →P X.

Note that X is allowed to be a constant.
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Convergence with probability 1 (w.p. 1) or almost surely
(a.s.) A sequence of random variables Xn converges w.p.1 or a.s to a
random variable X if

P {Xn → X, as n→∞} = 1.

This is usually written as

Xn → X, w.p.1, as n→∞, or Xn → X, a.s., as n→∞.
Note that convergence in probability does not imply convergence al-
most surely, but the converse is obviously true.

Convergence in distribution A sequence of random variables Xn

converges in distribution to a random variable X with cdf F if for
every continuity point x of F, as n→∞,

P (Xn ≤ x)→ P (X ≤ x) =: F (x).

This is often written
Xn →d X.

As further notation we write

X =d Y

to mean that X and Y have the same cdf.

Empirical distribution function The empirical distribution function
based on a random sample X1, . . . , Xn is the cumulative function Fn
defined for each x to be

(A.1) Fn(x) =
# {Xi ≤ x}

n
= n−1

n∑
i=1

1 {Xi ≤ x} .

To construct Fn as in (A.1), it is convenient to know the order statistics
based on X1, . . . , Xn.

Order statistics Let X1, . . . , Xn be independent random variables
with cdf F. Their order statistics are defined to be the ordered values
X1,n ≤ · · · ≤ Xn,n. Xk,n is called the kth order statistic based upon
X1, . . . , Xn.

The weak law of large numbers

For each n ≥ 1, let X1, . . . , Xn be independent random variables with
common cdf F . If E|X1| <∞, then

(A.2)

∫ ∞
−∞

xdFn(x) =: X̄ →P µ =

∫ ∞
−∞

xdF (x).



 
 

A. BASIC LARGE SAMPLE THEORY FACTS 85

The strong law of large numbers

If X1, X2 . . . , is an infinite sequence of i.i.d. F random variables sitting
on the same probability space then, with probability 1, X̄ → µ.

The Central limit theorem

Let X1, . . . , Xn be independent random variables with common cdf F .
If 0 < σ2 = V arX1 <∞, then

(A.3)

√
n(X̄ − µ)

σ

d→ Z,

where Z is a standard normal random variable.

Fact (A) Xn →P X implies Xn →d X.

Proof. Choose any continuity point x of F, the cdf of X, and any
ε > 0.

P (X ≤ x− ε, |Xn −X| ≤ ε) ≤ P (Xn ≤ x)

≤ P (X ≤ x+ ε, |Xn −X| ≤ ε) + P (|Xn −X| > ε) .

Hence

P (X ≤ x− ε)− P (|Xn −X| > ε) ≤ P (Xn ≤ x)

≤ P (X ≤ x+ ε) + P (|Xn −X| > ε) .

Since P (|Xn −X| > ε)→ 0 as n→ 0, we have for all n sufficiently
large

F (x− ε)− ε ≤ P (Xn ≤ x) ≤ F (x+ ε) + ε.

Since F is continuous at x and ε can be made arbitrarily small

P (Xn ≤ x)→ F (x).

�

Fact (B)(Baby Skorohod representation theorem) It is not in
general true that Xn →d X implies Xn →P X. However, the following
is true: if Xn →d X then there exists a sequence of random variables
{Yn}n≥1 such that Yn =d Xn for all n ≥ 1 and

Yn →P X.

We shall only prove this theorem in the case when X = c, where c is a
constant. In this case we can choose Yn = Xn, since Xn →P c.

Proof. Xn →d c means P (Xn ≤ c + ε) → 1 for all ε > 0 and
P (Xn ≤ c − ε) → 0 for all ε > 0. This implies that both P (Xn − c <
−ε) → 0 and P (Xn − c > ε) → 0 as n → ∞, which is equivalent to
P (|Xn −X| > ε)→ 0 as n→∞. (What we have actually shown here
is that Xn →d c if and only if Xn →P c. The only if part comes from
Fact (A).) �
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For a complete proof of Fact (B) refer to Theorem 1.6.3 of Serfling
(1980). There it is shown that one can choose X = Q (U) and Yn =
Qn (U), n ≥ 1, where Q is the quantile function of X and Qn is the
quantile function of Xn, n ≥ 1, and, in fact, Yn → X, a.s.

More generally, Skorohod (1956) proved that if {Pn}n≥1 is a sequence of
probability measures on a complete separable metric space S converg-
ing weakly to a probability measure P on S, then there exist S-valued
random variables Xn each with distribution Pn such that Xn converges
almost surely to X, where X has distribution P . (For more about the
Skorohod representation theorem consult Billingsley (1999).)

Fact (C) If g is continuous on the image of X and Xn →p X, then
g (Xn)→P g (X) .

Proof. We shall only prove this in the case when X = c, where c is
a constant. Choose any ε > 0 and δ > 0 such that |g(x)− g(c)| ≤ ε
whenever |x− c| ≤ δ. We see that

P (|g(Xn)− g(c)| > ε) ≤ P (|Xn − c| > δ)→ 0, as n→∞.
Thus g(Xn)→P g(c) if Xn →P X. �

Combining Facts (B) and (C), we get

Fact (D)(Mann-Wald theorem) If g is continuous then Xn →d X
implies g (Xn)→d g (X).

Fact (E) If Xn →P X and Yn →P Y then Xn + Yn →P X + Y.

Proof. By the triangle inequality

|Xn + Yn −X − Y | ≤ |Xn −X|+ |Yn − Y |.
Thus, as n→∞,

P (|Xn + Yn − (X + Y )| > ε)

≤ P
(
|Xn −X| >

ε

2

)
+ P

(
|Yn − Y | >

ε

2

)
→ 0.

�

Big Op and little op notation Let Yn be a sequence of random
variables and γn be a sequence of positive constants. The notation

Yn = Op(γn),

means that the sequence Yn/γn is bounded in probability, that is, for
all ε > 0 there is an M such that for all n ≥ 1,

P (|Yn| > Mγn) < ε.
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Also we shall use the notation

Yn = op(γn),

to denote that Yn/γn →P 0. In particular, Yn = Op(1) means that the
sequence of random variables is bounded in probability and Yn = op(1)
means that Yn →P 0.

Fact (F) If Xn →P 0 and Yn = Op(1), then XnYn →P 0.

Proof. Notice that

P (|XnYn| > ε) ≤ P (|Xn| > ε2) + P (|Yn| > ε−1)

and both of the terms on the right hand side of this inequality can be
made as small as desired by choosing ε > 0 small enough and by letting
n→∞. �
Fact (G) If An →P 0 and Xn →P X then AnXn →P 0.

This is a special case of (F).

One can also show that

Fact (G’) If An →P 0 and Xn →d X then AnXn →P 0.

Fact (H) If Xn →P X and Yn →P Y then XnYn →P XY .

Proof. Observe that

XY −XnYn = (X −Xn)Y − (Xn −X)(Yn − Y ) +X(Y − Yn).

Now by (F)

(Xn −X)Y →P 0, (Xn −X)(Yn − Y )→p 0 and X(Y − Yn)→P 0.

Hence by (E)
XY −XnYn →P 0.

�

Fact (I) If Xn →d X and Xn − Yn →P 0 then Yn →d X.

Proof. Choose any continuity point x of F and ε > 0 such that
x+ ε is a continuity point of F .

P (Yn ≤ x) ≤ P (Xn ≤ x+ ε) + P (|Xn − Yn| > ε).

Hence
lim sup
n→∞

P (Yn ≤ x) ≤ F (x+ ε).

Similarly choose δ > 0 such that x − δ is a continuity point of F. We
get in a similar manner

lim inf
n→∞

P (Yn ≤ x) ≥ F (x− δ).
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Since both δ > 0 and ε > 0 can be made arbitrarily small

lim
n→∞

P (Yn ≤ x) = F (x).

�

Fact (J) (Slutsky’s theorem) If Xn →d X and for constants A and
B,

An →P A and Bn →P B,

then

AnXn +Bn →d AX +B.

Proof. Notice that by Fact (D),

AXn +B →d AX +B.

Next write

AnXn +Bn − AXn −B = (An − A)Xn +Bn −B.
Applying (G), we see that (An − A)Xn →P 0. This combined with
Bn −B →P 0, implies by (E) that

AnXn +Bn − (AXn +B)→P 0,

Hence by (I)

AnXn +Bn →d AX +B.

�

Fact (K) Let an be a sequence of constants converging to infinity such
that

an(Xn − b)→d W.

If g is any function which is differentiable at b with derivative g′(b),
then

an(g(Xn)− g(b))→d g
′(b)W.

Proof. Observe that since an(Xn − b) →d W and an → ∞, we get
that Xn →P b. Let h be a function defined as follows:

h(x) =

{
g(x)−g(b)
x−b , x 6= b

g′(b), when x = b.

Since g is differentiable at b, h is continuous at b. Hence

h(Xn)→P g
′(b)

by (C). Now

an(g(Xn)− g(b)) = h(Xn)an(Xn − b),
which by Slutsky’s Theorem converges in distribution to g′(b)W. �



 
 

A. BASIC LARGE SAMPLE THEORY FACTS 89

A shorthand way to write a number of the above facts is the following:
Let

Xn = OP (1), Yn = OP (1), Wn = oP (1), Zn = oP (1),

Then

Xn + Yn = OP (1), XnYn = OP (1), Wn + Zn = oP (1),

WnZn = oP (1) and XnWn = oP (1).

Fact (L) (Borel–Cantelli lemma) Let {An}n≥1 be a sequence of events
on a probability space (Ω, A, P ). The event

{An, i.o.} = ∩∞n=1 ∪∞m=n Am,

where “i.o.” means “infinitely often”. Notice that this is the set of
ω ∈ Ω such that ω ∈ An for infinitely manyAn in the sequence {An}n≥1.

The Borel–Cantelli lemma says that if
∞∑
n=1

P (An) <∞,

then P {An, i.o.} = 0, and if {An}n≥1 are independent, then

∞∑
n=1

P (An) =∞,

implies P {An, i.o.} = 1.

Moment inequalities

A good source for moment inequalities is the set of notes: Properties
of moments of random variables, by Jean-Marie Dufour.

http://www2.cirano.qc.ca/˜dufourj/Web Site/ResE/Dufour

1999 C TS Moments.pdf



 
 



 
 

APPENDIX B

Properties of Order Statistics

Let X1, . . . , Xn be independent random variables with cdf F. Their
order statistics are defined to be the ordered values X1,n ≤ · · · ≤ Xn,n.
Note the special cases

X1,n = min
1≤i≤n

Xi and Xn,n = max
1≤i≤n

Xi.

To derive the cdf of an order statistic Xi,n, 1 ≤ i ≤ n, we will need the
following equation that relates the Beta distribution to the Binomial
distribution.

Relation between the Beta and the Binomial distribution

Theorem 1B For all 1 ≤ k ≤ n and 0 ≤ p ≤ 1,

(B.1)

∫ p

0

n

(
n− 1
k − 1

)
uk−1(1− u)n−kdu =

n∑
m=k

(
n
m

)
pm(1− p)n−m,

or in other words,

(B.2) P {Beta(k, n− k + 1) ≤ p} = P {Bin(n, p) ≥ k} .

Proof. Set

Pm =

∫ p

0

n

(
n− 1
m− 1

)
um−1(1− u)n−mdu.

Notice that

Pn =

∫ p

0

n

(
n− 1
n− 1

)
un−1(1− u)n−ndu = pn =

(
n
n

)
pn.

Next by integration by parts for any m < n

Pm = n

(
n− 1
m− 1

)
pm

m
(1− p)n−m

+

∫ p

0

n

(
n− 1
m− 1

)(
n−m
m

)
um(1− u)n−m−1du

= n

(
n− 1
m− 1

)
pm

m
(1− p)n−m +

∫ p

0

n

(
n− 1
m

)
um(1− u)n−m−1du
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=

(
n
m

)
pm(1− p)n−m + Pm+1.

Thus
n−1∑
m=k

(Pm − Pm+1) = Pk − Pn =
n−1∑
m=k

(
n
m

)
pm(1− p)n−m.

This completes the proof. �

Distribution of order statistics

Theorem 2B. Let X1, . . . , Xn be independent random variables with
common cdf F, then

(i) for all x
(B.3)

P {Xk,n ≤ x} =

∫ x

−∞
n

(
n− 1
k − 1

)
F (w)k−1(1− F (w))n−kdF (w);

(ii) for all x < y and 1 ≤ k < l ≤ n,

P {Xk,n ≤ x, Xl,n ≤ y}

=

∫ x

−∞

∫ y

−∞
n(n− 1)I {w ≤ z}

(
n− 2

k − 1, l − k − 1, n− l

)
(B.4) ×F (w)k−1 (F (z)− F (w))l−k−1 (1− F (z))n−ldF (w)dF (z)

and (iii) for all x ≥ y

(B.5) P {Xk,n ≤ x, Xl,n ≤ y} = P {Xl,n ≤ y} .

Proof of (i). Let

Sn(x) =
n∑
i=1

I {Xi ≤ x} .

Clearly

P {Xk,n ≤ x} = P {Sn(x) ≥ k}

=
n∑

m=k

(
n
m

)
F (x)m(1− F (x))n−m,

which by (B.1) equals∫ F (x)

0

n

(
n− 1
k − 1

)
uk−1(1− u)n−kdu.
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This last integral by the change of variables u = F (w) is equal to∫ x

−∞
n

(
n− 1
k − 1

)
F (w)k−1(1− F (w))n−kdF (w).

Proof of (ii). Choose any x < y. We see that

P {Xk,n ≤ x, Xl,n ≤ y} = P {Sn(x) ≥ k, Sn(y) ≥ l}

=
∑

k+j+i≥l

P {Sn(y)− Sn(x) = i, Sn(x) = k + j}

=
∑

k+j+i≥l

(
n

i, k + j, n− k − i− j

)
F (x)k+j (F (y)− F (x))i

×(1− F (y))n−k−i−j(B.6)

=

∫ F (x)

0

∫ F (y)

0

n(n− 1)I {u ≤ v}
(

n− 2
k − 1, l − k − 1, n− l

)
×uk−1 (v − u)l−k−1 (1− v)n−ldudv,(B.7)

which by the change of variables v = F (z) and u = F (w), equals (B.1).

Part (iii) is obvious. �

Theorem 3B. Let X1, . . . , Xn be independent random variables with
common probability density function [pdf f ], then

(i) Xk,n has pdf

(B.8) fX(k)
(x) = n

(
n− 1
k − 1

)
F (x)k−1(1− F (x))n−kf(x);

(ii) for 1 ≤ k < l ≤ n, the pair (Xk,n, Xl,n) has joint pdf

fXk,n,Xl,n(x, y) = n(n− 1)I {x ≤ y}×(
n− 2

k − 1, l − k − 1, n− l

)
F (x)k−1 (F (y)− F (x))l−k−1

× (1− F (y))n−lf(x)f(y);(B.9)

(iii) (X1,n, . . . , Xn,n) has joint pdf

f(X1,n,...,Xn,n)(x(1), . . . , x(n)) =

 n!f(x(1)) . . . f(x(n)), x(1) ≤ · · · ≤ x(n)

0, elsewhere.

Proof. We only have to prove part (iii). Choose any permutation
i1, . . . , in of 1, . . . , n. We see that

P {X1,n ≤ x1, . . . , Xn,n ≤ xn and X1,n = Xi1 , . . . , Xn,n = Xin}
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=

∫ xn

−∞
. . .

∫ x1

−∞
I {wi1 ≤ . . . . ≤ win} f(wi1) . . . f(win)dwi1 . . . dwin

=

∫ xn

−∞
. . .

∫ x1

−∞
I {w1 ≤ . . . . ≤ wn} f(w1) . . . f(wn)dw1 . . . dwn.

Now clearly

P {X1,n ≤ x1, . . . , Xn,n ≤ xn}

=
∑

permutations i1,...,in

P {X1,n ≤ x1, . . . , Xn,n ≤ xn

and X1,n = Xi1 , . . . , Xn,n = Xin}

=

∫ xn

−∞
. . .

∫ x1

−∞
n!I {w1 ≤ . . . . ≤ wn} f(w1) . . . f(wn)dw1 . . . dwn.

�

Application

Let (U1,n, . . . , Un,n) denote the order statistics of n independent uniform
random variables U1, . . . , Un. Here we shall establish a useful represen-
tation for the joint distribution of the uniform order statistics. Let
ω1, . . . , ωn+1, be independent exponential random variables with mean
1. For each 1 ≤ k ≤ n+ 1, let

Sk =
k∑
i=1

ωi.

Note that since both Uk,n and Sk/Sn+1 are Beta(k, n− k + 1) random
variables, we have

Uk,n =d
Sk
Sn+1

.

More generally we have the following.

Theorem 4B For all n ≥ 1

(U1,n, . . . , Un,n) =d

(
S1

Sn+1

, . . . ,
Sn
Sn+1

)
=: V

and Sn+1 is independent of V .

Proof. Consider the transformation

(y1, . . . , yn+1)
g→(

y1

y1 + · · ·+ yn+1

, . . . ,
y1 + · · ·+ yn
y1 + · · ·+ yn+1

, y1 + · · ·+ yn+1

)
= (v1, . . . , vn, vn+1).
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This transformation has inverse

g−1(v1, . . . , vn, vn+1)

= (vn+1v1, vn+1v2 − vn+1v1, . . . , vn+1vn − vn+1vn−1, vn+1 − vn+1vn)

= (h1, . . . , hn+1) .

Note that the joint pdf of (ω1, . . . , ωn+1) is

fE1,...,En+1(y1, . . . , yn+1) = e−y1 . . . e−yn+1I {y1 > 0, . . . , yn+1 > 0} .
We get then that the joint pdf of(

S1

Sn+1

, . . . ,
Sn
Sn+1

, Sn+1

)
= (V1, . . . , Vn, Vn+1)

is

fV1,...,Vn+1(v1, . . . , vn+1)

= fω1,...,ωn+1

(
g−1(v1, . . . , vn, vn+1)

)
|J(v1, . . . , vn, vn+1)| ,

where

J(v1, . . . , vn, vn+1) = det

∣∣∣∣∣∣
dh1
dv1

, . . . , dh1
dvn+1

dhn+1

dv1
, . . . , dhn+1

dvn+1

∣∣∣∣∣∣ .
One finds that

fV1,...,Vn(v1, . . . , vn) =

∫ ∞
0

fV1,...,Vn+1(v1, . . . , vn+1)dvn+1

= n!I {0 ≤ v1 ≤ · · · ≤ vn ≤ 1} = fU1,n,...,Un,n(v1, . . . , vn).

and

fV1,...,Vn+1(v1, . . . , vn+1) = fV1,...,Vn(v1, . . . , vn)fVn+1(vn+1).

�
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Csörgő, S.; Mason, D. M. The asymptotic distribution of sums of ex-
treme values from a regularly varying distribution. Ann. Probab. 14
(1986), 974–983.
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Csörgő, S.; Viharos, L. Testing for small bias of tail index estimators.
J. Comput. Appl. Math. 186 (2006), 232–252.

Daniels, H. E. The statistical theory of the strength of bundles of
thread. Proc. Roy. Soc. London Ser. A 183, (1945), 405–435.

Deheuvels, P.; Mason, D. M. Bahadur-Kiefer-type processes. Ann.
Probab. 18 (1990), 669–697.

Deheuvels, P.; Mason, D. M.; Shorack, G. R. Some results on the
influence of extremes on the bootstrap. Ann. Inst. H. Poincaré Probab.
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